메뉴 건너뛰기




Volumn 7, Issue 2, 1994, Pages 321-329

What size network is good for generalization of a specific task of interest?

Author keywords

Boolean function; Capacity; Complexity; Feedforward; Generalization; Learning; Neural network; Occam's razor; Training

Indexed keywords

BINARY SEQUENCES; BOOLEAN FUNCTIONS; COMPUTATIONAL COMPLEXITY; COMPUTER ARCHITECTURE; FORMAL LOGIC; LEARNING SYSTEMS; NETWORK PROTOCOLS; PATTERN RECOGNITION; PROBABILITY; RANDOM PROCESSES; SYSTEMS ANALYSIS; THRESHOLD ELEMENTS;

EID: 0028195682     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/0893-6080(94)90026-4     Document Type: Article
Times cited : (27)

References (22)
  • 1
    • 84912989777 scopus 로고
    • A universal theorem on learning curves
    • The University of Tokyo, Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineering, Tokyo, Japan
    • (1992) Tech. Rep. METR92-03
    • Amari1
  • 3
    • 84912995331 scopus 로고    scopus 로고
    • Amari, S., & Murata, N. Statistical theory of curves under entropic loss criterion (Tech. Rep. METR91-12). Tokyo, Japan: The University of Tokyo, Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineering.
  • 21
    • 0011867814 scopus 로고
    • The relationship between Occam's razor and convergent guessing
    • (1990) Complex Systems , vol.4 , pp. 319-368
    • Wolpert1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.