-
1
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
Nov.
-
I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math., vol. 41, pp. 909–996, Nov. 1988.
-
(1988)
Commun. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
3
-
-
34250842720
-
On the spectrum of fractional Brownian motions
-
Jan
-
P. Flandrin, “On the spectrum of fractional Brownian motions,” IEEE Trans. Informat. Theory, vol. 35, pp. 197–199, Jan. 1989.
-
(1989)
IEEE Trans. Informat. Theory
, vol.35
, pp. 197-199
-
-
Flandrin, P.1
-
4
-
-
0026628466
-
Wavelet analysis and synthesis of fractional Brownian motion
-
Mar.
-
P. Flandrin, “Wavelet analysis and synthesis of fractional Brownian motion,” IEEE Trans. Informat. Theory, vol. 38, pp. 910–917, Mar. 1992.
-
(1992)
IEEE Trans. Informat. Theory
, vol.38
, pp. 910-917
-
-
Flandrin, P.1
-
5
-
-
0026378049
-
Fractal dimension estimators for fractal Brownian motions
-
Mar.
-
N. Gache, P. Flandrin, and D. Garreau, “Fractal dimension estimators for fractal Brownian motions,” in IEEE ICASSP-91, Mar. 1991, pp. 3557–3560.
-
(1991)
IEEE ICASSP-91
, pp. 3557
-
-
Gache, N.1
Flandrin, P.2
Garreau, D.3
-
6
-
-
33748496844
-
Fractal estimation from noisy measurements via discrete fractional Gaussian noise (dfGn) and the Haar basis
-
Univ. of Southern California, Los Angeles, July 1992, Tech. Rep. SIPI212
-
L. M. Kaplan and C.-C. J. Kuo, “Fractal estimation from noisy measurements via discrete fractional Gaussian noise (dfGn) and the Haar basis,” Univ. of Southern California, Los Angeles, July 1992, Tech. Rep. SIPI212.
-
(1992)
-
-
Kaplan, L.M.1
Kuo, C.C.J.2
-
7
-
-
0020102486
-
l/f noise
-
Mar.
-
M. S. Keshner, “l/f noise,” Proc. IEEE, vol. 70, pp. 212–218, Mar. 1982.
-
(1982)
Proc. IEEE
, vol.70
, pp. 212-218
-
-
Keshner, M.S.1
-
8
-
-
77949515579
-
Fractional Brownian motion: A maximum likelihood estimator and its application to image texture
-
Sept.
-
T. Lundahl, W. J. Ohley, S. M. Kay, and R. Silfert, “Fractional Brownian motion: A maximum likelihood estimator and its application to image texture,” IEEE Trans. Med. Imaging, vol. MI-5, pp. 152–161, Sept. 1986.
-
(1986)
IEEE Trans. Med. Imaging
, vol.MI-5
, pp. 152-161
-
-
Lundahl, T.1
Ohley, W.J.2
Kay, S.M.3
Silfert, R.4
-
9
-
-
0024700097
-
A theory for multiresolution signal decomposition: the wavelet representation
-
July
-
S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 11, pp. 674–693, July 1989.
-
(1989)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.11
, pp. 674-693
-
-
Mallat, S.G.1
-
11
-
-
0000501589
-
Fractional Brownian motions, fractional noises and applications
-
Oct.
-
B. Mandelbrot and J. W. V. Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Rev., vol. 10, pp. 422–437, Oct. 1968.
-
(1968)
SIAM Rev.
, vol.10
, pp. 422-437
-
-
Mandelbrot, B.1
Ness, J.W.V.2
-
13
-
-
0021523150
-
Fractal-based description of natural scenes
-
Nov.
-
A. P. Pentland, “Fractal-based description of natural scenes,” IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-6, pp. 661–674, Nov. 1984.
-
(1984)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.PAMI-6
, pp. 661-674
-
-
Pentland, A.P.1
-
14
-
-
0026190345
-
On the wavelet transform of fractional Brownian motion
-
July
-
J. Ramanathan and O. Zeitouni, “On the wavelet transform of fractional Brownian motion,” IEEE Trans. Informat. Theory, vol. 37, pp. 1156–1158, July 1991.
-
(1991)
IEEE Trans. Informat. Theory
, vol.37
, pp. 1156-1158
-
-
Ramanathan, J.1
Zeitouni, O.2
-
16
-
-
0026679673
-
Correlation Structure of discrete wavelet coefficients of fractional Brownian motion
-
Mar.
-
A. H. Tewfik and M. Kim, “Correlation Structure of discrete wavelet coefficients of fractional Brownian motion,” IEEE Trans. Informat. Theory, vol. 38, pp. 904–909, Mar. 1992.
-
(1992)
IEEE Trans. Informat. Theory
, vol.38
, pp. 904-909
-
-
Tewfik, A.H.1
Kim, M.2
-
17
-
-
0025462413
-
A Karhunen-Loeve like expansion for 1/fprocesses via wavelets
-
July
-
G. W. Womell, “A Karhunen-Loeve like expansion for 1/fprocesses via wavelets,” IEEE Trans. Informat. Theory, vol. 36, pp. 859–861, July 1990.
-
(1990)
IEEE Trans. Informat. Theory
, vol.36
, pp. 859-861
-
-
Womell, G.W.1
-
18
-
-
0026829738
-
Estimation of fractal signals from noisy measurements using wavelets
-
Mar.
-
G. W. Womell and A. V. Oppenheim, “Estimation of fractal signals from noisy measurements using wavelets,” IEEE Trans. Signal Processing, vol. 40, pp. 611–623, Mar. 1992.
-
(1992)
IEEE Trans. Signal Processing
, vol.40
, pp. 611-623
-
-
Womell, G.W.1
Oppenheim, A.V.2
|