메뉴 건너뛰기




Volumn 5, Issue 6, 1993, Pages 950-964

Learning Transformation Rules for Semantic Query Optimization: A Data-Driven Approach

Author keywords

Data; discovery in databases; learning; rule discovery; semantic query optimization

Indexed keywords

ALGORITHMS; COMPUTATIONAL LINGUISTICS; DATA HANDLING; LEARNING SYSTEMS; OPTIMIZATION; QUERY LANGUAGES;

EID: 0027866831     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/69.250077     Document Type: Article
Times cited : (27)

References (42)
  • 1
    • 84910856289 scopus 로고
    • QUIST: A system for semantic query optimization in relational databases
    • J. J. King, “QUIST: A system for semantic query optimization in relational databases,” in Proc. 7th VLDB Conf., 1981.
    • (1981) Proc. 7th VLDB Conf.
    • King, J.J.1
  • 4
    • 0026142456 scopus 로고
    • An efficient semantic query optimization algorithm
    • IEEE
    • H. H. Pang, H. J. Lu, and B. C. Ooi, “An efficient semantic query optimization algorithm,” in Proc. Data Eng. Conf., IEEE, 1991.
    • (1991) Proc. Data Eng. Conf.
    • Pang, H.H.1    Lu, H.J.2    Ooi, B.C.3
  • 5
    • 84910828012 scopus 로고
    • Panel discussion on semantic query optimization
    • G. M. Lohman, “Panel discussion on semantic query optimization,” in Proc. Data Eng. Conf., 1985.
    • (1985) Proc. Data Eng. Conf.
    • Lohman, G.M.1
  • 6
    • 84941454986 scopus 로고
    • A formal model of tradeoffs between execution and optimization costs in semantic query optimization
    • (reprinted in N. H. J. D. K. E.
    • S. Shekhar, J. Srivastava, and S. Dutta, “A formal model of tradeoffs between execution and optimization costs in semantic query optimization,” in Intl. Conf. Very Large Databases (VLDB) (reprinted in N. H. J. D. K. E. 1993), 1988.
    • (1993) Intl. Conf. Very Large Databases (VLDB)
    • Shekhar, S.1    Srivastava, J.2    Dutta, S.3
  • 7
    • 0024736663 scopus 로고
    • Automatic knowledge acquisition and maintenance for semantic query optimization
    • C. T. Yu and W. Sun, “Automatic knowledge acquisition and maintenance for semantic query optimization,” IEEE Trans. Knowledge and Data Processing, pp. 362–375, 1989.
    • (1989) IEEE Trans. Knowledge and Data Processing , pp. 362-375
    • Yu, C.T.1    Sun, W.2
  • 8
    • 84976682538 scopus 로고
    • A system for semantic query optimization
    • S. T. Shenoy and Z. M. Ozsoyoglu, “A system for semantic query optimization,” in Proc. ACM-SIGMOD, pp. 181–195, 1987.
    • (1987) Proc. ACM-SIGMOD , pp. 181-195
    • Shenoy, S.T.1    Ozsoyoglu, Z.M.2
  • 10
    • 0038552114 scopus 로고
    • Automatic rule derivation for semantic query optimization
    • M. Siegel, “Automatic rule derivation for semantic query optimization,” Ph.D. diss., Boston Univ., 1988.
    • (1988) Ph.D. diss., Boston Univ.
    • Siegel, M.1
  • 11
    • 0039699093 scopus 로고
    • Automatic rule derivation for semantic query optimization
    • George Mason Foundation
    • M. Siegel, “Automatic rule derivation for semantic query optimization,” in Proc. 2nd Int. Conf. Expert Database Syst., pp. 371–385, George Mason Foundation, 1988.
    • (1988) Proc. 2nd Int. Conf. Expert Database Syst. , pp. 371-385
    • Siegel, M.1
  • 13
    • 0344252200 scopus 로고
    • DEDUCE 2: Further investigations of deduction in relational data bases
    • J. Minker, Ed. New York: Plenum
    • C. L. Chang, “DEDUCE 2: Further investigations of deduction in relational data bases,” in Logic and Data Bases, J. Minker, Ed. New York: Plenum, 1978, 201–236.
    • (1978) Logic and Data Bases , pp. 201-236
    • Chang, C.L.1
  • 14
    • 0020289818 scopus 로고
    • Logic for improving integrity checking in relational databases
    • Springer-Verlag
    • J. M. Nicolas, “Logic for improving integrity checking in relational databases,” Acta Informtica, vol. 18, pp. 227–253, Springer-Verlag, 1982.
    • (1982) Acta Informtica , vol.18 , pp. 227-253
    • Nicolas, J.M.1
  • 15
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • T. M. Mitchell, Ed. Los Altos, CA: Morgan Kaufmann
    • R. S. Michalski, “A theory and methodology of inductive learning,” in Machine Learning: An Artificial Intelligence Approach. T. M. Mitchell, Ed. Los Altos, CA: Morgan Kaufmann, 1986.
    • (1986) Machine Learning: An Artificial Intelligence Approach
    • Michalski, R.S.1
  • 16
    • 0003046842 scopus 로고
    • Learning from observation: Conceptual clustering
    • T. M. Mitchell, Ed. Palo Alto, CA: Tioga
    • R. S. Michalski and R. E. Stepp, “Learning from observation: Conceptual clustering,” in Machine Learning: An Artificial Intelligence Approach, T. M. Mitchell, Ed. Palo Alto, CA: Tioga, 1983, pp. 331–363.
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 331-363
    • Michalski, R.S.1    Stepp, R.E.2
  • 17
    • 0001286553 scopus 로고
    • Probabilistic decision trees
    • Yves Kodratoff, Ed. San Mateo, CA: Morgan Kaufmann
    • J. R. Quinlan, “Probabilistic decision trees,” in Machine Learning: An Aritificial Intelligence Approach, Yves Kodratoff, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 140–152.
    • (1990) Machine Learning: An Aritificial Intelligence Approach , pp. 140-152
    • Quinlan, J.R.1
  • 20
    • 0000490505 scopus 로고
    • A review of classification
    • Series A
    • R. M. Cormark, “A review of classification,” J. Roy Stat. Soc., Series A, pp. 134–321, 1971.
    • (1971) J. Roy Stat. Soc. , pp. 134-321
    • Cormark, R.M.1
  • 22
    • 0014185876 scopus 로고
    • A comparison of some methods of cluster analysis
    • J. C. Gower, “A comparison of some methods of cluster analysis,” Biometrics, vol. 23, pp. 623–637. 1967.
    • (1967) Biometrics , vol.23 , pp. 623-637
    • Gower, J.C.1
  • 24
    • 0019063015 scopus 로고
    • Knowledge acquisition through conceptual clustering: A theoretical framework and an algorithm for partitioning data into conjunctive concepts
    • R. S. Michalski, “Knowledge acquisition through conceptual clustering: A theoretical framework and an algorithm for partitioning data into conjunctive concepts,” in J. Pol. Anal. Inform. Syst., vol. 4, pp. 219–244, 1980.
    • (1980) J. Pol. Anal. Inform. Syst. , vol.4 , pp. 219-244
    • Michalski, R.S.1
  • 27
    • 0006035909 scopus 로고
    • Conceptual clustering and categorization: Bridging the gap between induction and causal models
    • Yves Kodratoff, Ed. San Mateo, CA: Morgan Kaufmann
    • S. J. Hanson, “Conceptual clustering and categorization: Bridging the gap between induction and causal models,” in Machine Learning: An Artificial Intelligence Approach, Yves Kodratoff, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 235–268.
    • (1990) Machine Learning: An Artificial Intelligence Approach , pp. 235-268
    • Hanson, S.J.1
  • 28
    • 0022276568 scopus 로고
    • Statistics metadata: Linear regression analysis
    • Katsumi Tanaka, Ed. New York: Plenum
    • S. P. Ghosh, “Statistics metadata: Linear regression analysis,” in Foundations of Data Organization, Katsumi Tanaka, Ed. New York: Plenum, 1987, pp. 3–17.
    • (1987) Foundations of Data Organization , pp. 3-17
    • Ghosh, S.P.1
  • 30
    • 0002856251 scopus 로고
    • Interactive mining of regularities in databases
    • AAAI Press
    • J. Zytkow and J. Baker, “Interactive mining of regularities in databases,” Knowledge Discovery in Databases, AAAI Press, 1991.
    • (1991) Knowledge Discovery in Databases
    • Zytkow, J.1    Baker, J.2
  • 31
    • 0001689415 scopus 로고
    • The role of heuristics in learning by discovery: Three case studies
    • T. M. Mitchell, Ed. Palo Alto, CA: Tioga
    • D. B. Lenat, “The role of heuristics in learning by discovery: Three case studies,” in Machine Learning: An Artificial Intelligence Approach , T. M. Mitchell, Ed. Palo Alto, CA: Tioga, 1983.
    • (1983) Machine Learning: An Artificial Intelligence Approach
    • Lenat, D.B.1
  • 32
    • 0013372107 scopus 로고
    • The search for regularity: Four aspects of scientific discovery
    • T. M. Mitchell, Ed. Los Altos, CA: Morgan Kaufmann
    • P. Langley, J. Zytkow, H. Simon, and G. Bradshaw, “The search for regularity: Four aspects of scientific discovery,” in Machine Learning: An Artificial Intelligence Approach, T. M. Mitchell, Ed. Los Altos, CA: Morgan Kaufmann, 1986, pp. 425–469.
    • (1986) Machine Learning: An Artificial Intelligence Approach , pp. 425-469
    • Langley, P.1    Zytkow, J.2    Simon, H.3    Bradshaw, G.4
  • 34
    • 71349088695 scopus 로고
    • Semantic integrity in a relational data base system
    • M. Hammer and D. McLeod, “Semantic integrity in a relational data base system,” VLDB, 1975.
    • (1975) VLDB
    • Hammer, M.1    McLeod, D.2
  • 35
    • 71349085327 scopus 로고
    • Functional specifications of a subsystem for database integrity
    • K. Eswaran and D. D. Chamberlin, “Functional specifications of a subsystem for database integrity,” VLDB, 1975.
    • (1975) VLDB
    • Eswaran, K.1    Chamberlin, D.D.2
  • 36
    • 0018705521 scopus 로고
    • Extending the database relational model to capture more meaning
    • Dec.
    • E. Codd, “Extending the database relational model to capture more meaning,” TODS, vol. 4, no. 4, Dec. 1979.
    • (1979) TODS , vol.4 , Issue.4
    • Codd, E.1
  • 37
    • 84976766949 scopus 로고
    • The entity relationship mode-Toward a unified view of data
    • Mar.
    • P. Chen, “The entity relationship mode—Toward a unified view of data,” TODS vol. 4, no. 4, Mar. 1976.
    • (1976) TODS , vol.4 , Issue.4
    • Chen, P.1
  • 38
    • 0346093387 scopus 로고
    • On the semantics of the relational model
    • J. Schmidt and J. Swenson, “On the semantics of the relational model,” SIGMOD, 1975.
    • (1975) SIGMOD
    • Schmidt, J.1    Swenson, J.2
  • 39
    • 0002829291 scopus 로고
    • The multilevel grid file-A dynamic hierarchical multidimensional file structure
    • April Tokyo, Japan
    • K. Y. Whang and R. Krishnamurthy, “The multilevel grid file—A dynamic hierarchical multidimensional file structure,” Int. Symp. Database Syst. Advanced Applications, Tokyo, Japan, April 1991.
    • (1991) Int. Symp. Database Syst. Advanced Applications
    • Whang, K.Y.1    Krishnamurthy, R.2
  • 40
    • 0024073536 scopus 로고
    • Statistical profile estimation in database systems
    • ACM, Sept
    • M. V. Mannino. P. Chu, and T. Sager, “Statistical profile estimation in database systems,” Comput. Surveys, vol. 20, no. 3, ACM, Sept. 1988.
    • (1988) Comput. Surveys , vol.20 , Issue.3
    • Mannino, M.V.1    Chu, P.2    Sager, T.3
  • 41
    • 84941458436 scopus 로고
    • Dynamic maintenance of data distribution for selectivity estimation
    • Sept. Stanford Univ.
    • K. Whang, S. Kim, and G. Wiederhold, “Dynamic maintenance of data distribution for selectivity estimation,” Dept, of Comput. Sci., Stanford Univ., Sept. 1991.
    • (1991) Dept, of Comput Sci
    • Whang, K.1    Kim, S.2    Wiederhold, G.3
  • 42
    • 84975844411 scopus 로고
    • R* optimizer validation and performance evaluation for local queries
    • ACM
    • L. F. Mackert and G. M. Lohman, “R* optimizer validation and performance evaluation for local queries,” in Proc. ACM-SIGMOD, pp. 84–95, ACM, 1986.
    • (1986) Proc. ACM-SIGMOD , pp. 84-95
    • Mackert, L.F.1    Lohman, G.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.