메뉴 건너뛰기




Volumn 4, Issue 6, 1993, Pages 962-969

An Improved Algorithm for Neural Network Classification of Imbalanced Training Sets

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER SCIENCE; ERROR ANALYSIS; LEARNING SYSTEMS;

EID: 0027698884     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.286891     Document Type: Article
Times cited : (189)

References (15)
  • 3
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,” Neural Networks, vol. 1, pp. 295–307, 1988.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 4
    • 0041437046 scopus 로고
    • Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks
    • COINS, Univ. Massachusetts, Tech. Rep.
    • R. A. Jacobs, M. I. Jordan, and A. G. Barto, “Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks,” Dept. COINS, Univ. Massachusetts, Tech. Rep. 90–27, 1990.
    • (1990) Dept , pp. 27-90
    • Jacobs, R.A.1    Jordan, M.I.2    Barto, A.G.3
  • 6
    • 0024124595 scopus 로고
    • Statistical pattern recognition with neural networks: Benchmarking studies
    • T. Kohonen, G. Barna, and R. Chrisley, “Statistical pattern recognition with neural networks: Benchmarking studies,” in Proc. Int. Conf. Neural Networks, vol. I, 1988, 61–68.
    • (1988) Proc. Int. Conf. Neural Networks , vol.I , pp. 61-68
    • Kohonen, T.1    Barna, G.2    Chrisley, R.3
  • 10
    • 0001969496 scopus 로고
    • Learning sets of filters using backpropagation
    • D. C. Plaut and G. E. Hinton, “Learning sets of filters using backpropagation,” Comput. Speech Language, vol. 2, pp. 35–61, 1987.
    • (1987) Comput. Speech Language , vol.2 , pp. 35-61
    • Plaut, D.C.1    Hinton, G.E.2
  • 12
    • 0024874676 scopus 로고
    • Backpropagation separates when perceptrons do
    • E. D. Sontag and H. J. Sussmann, “Backpropagation separates when perceptrons do,” in Proc. Int. Conf. Neural Networks, vol. I, 1988, pp. 639–642.
    • (1988) Proc. Int. Conf. Neural Networks , vol.I , pp. 639-642
    • Sontag, E.D.1    Sussmann, H.J.2
  • 13
    • 0025593679 scopus 로고
    • SuperSAB: Fast adaptive back propagation with good scaling properties
    • T. Tollenaere, “SuperSAB: Fast adaptive back propagation with good scaling properties,” Neural Networks, vol. 3, pp. 561–573, 1990.
    • (1990) Neural Networks , vol.3 , pp. 561-573
    • Tollenaere, T.1
  • 14
    • 0025857964 scopus 로고
    • A fast and robust learning algorithm for feedforward neural networks
    • N. Waymaere and J-P. Martens, “A fast and robust learning algorithm for feedforward neural networks,” Neural Networks, vol. 4, no. 3, pp. 361–370, 1991.
    • (1991) Neural Networks , vol.4 , Issue.3 , pp. 361-370
    • Waymaere, N.1    Martens, J-P.2
  • 15
    • 34250094997 scopus 로고
    • Accelerating the convergence of the back-propagation method
    • T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, “Accelerating the convergence of the back-propagation method,” Biol. Cybern., vol. 59, pp. 257–263, 1988.
    • (1988) Biol. Cybern , vol.59 , pp. 257-263
    • Vogl, T.P.1    Mangis, J.K.2    Rigler, A.K.3    Zink, W.T.4    Alkon, D.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.