-
2
-
-
0003807773
-
-
Englewood Cliffs, NJ: Prentice-Hall
-
S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 1986.
-
(1986)
Adaptive Filter Theory
-
-
Haykin, S.1
-
3
-
-
0000353243
-
How to generate ordered maps by maximizing the mutual information between input and output signals
-
R. Linsker, “How to generate ordered maps by maximizing the mutual information between input and output signals,” Neural Computation, vol. 1, pp. 402—411, 1989.
-
(1989)
Neural Computation
, vol.1
, pp. 402-411
-
-
Linsker, R.1
-
4
-
-
0023981750
-
Self-organization in a perceptual network
-
Mar.
-
R. Linsker, “Self-organization in a perceptual network,” IEEE Comput. Mag., vol. 2, pp. 105–117, Mar. 1988.
-
(1988)
IEEE Comput. Mag.
, vol.2
, pp. 105-117
-
-
Linsker, R.1
-
5
-
-
84941438789
-
Hebbian learning in linear neural networks: A review
-
submitted for publication.
-
F. Palmieri and J. Zhu, “Hebbian learning in linear neural networks: A review,” IEEE Trans. Neural Networks, submitted for publication.
-
IEEE Trans. Neural Networks
-
-
Palmieri, F.1
Zhu, J.2
-
6
-
-
0002843256
-
Adaptation and decorrelation in the cortex
-
R. Durbin, C. Miall, and G. Mitchinson, Eds. Reading, MA: Addison-Wesley
-
H. Barlow and P. Foldiak, “Adaptation and decorrelation in the cortex,” in The Computing Neuron, R. Durbin, C. Miall, and G. Mitchinson, Eds. Reading, MA: Addison-Wesley, 1989.
-
(1989)
The Computing Neuron
-
-
Barlow, H.1
Foldiak, P.2
-
7
-
-
0042276165
-
Differential Hebbian learning
-
B. Kosko, “Differential Hebbian learning,” in Proc. AIP Conf., vol. 157, 1986, pp. 277–288.
-
(1986)
Proc. AIP Conf.
, vol.157
, pp. 277-288
-
-
Kosko, B.1
-
8
-
-
0042276164
-
A drive-reinforcement model of single neuron function: An alternative to the Hebbian neuronal model
-
A. H. Klopf, “A drive-reinforcement model of single neuron function: An alternative to the Hebbian neuronal model,” in Proc. AIP Conf., vol. 151, 1986, pp. 265–270.
-
(1986)
Proc. AIP Conf.
, vol.151
, pp. 265-270
-
-
Klopf, A.H.1
-
14
-
-
0026679034
-
A comparison of two eigen-networks
-
Seattle, WA
-
F. Palmieri and J. Zhu, “A comparison of two eigen-networks,” in Proc. IJCNN, vol. 2, Seattle, WA, 1991, pp. 193–199.
-
(1991)
Proc. IJCNN
, vol.2
, pp. 193-199
-
-
Palmieri, F.1
Zhu, J.2
-
15
-
-
0038927359
-
Gram-Schmidt neural nets
-
S. J. Orfanidis, “Gram-Schmidt neural nets,” Neural Computation, vol. 2, pp. 116–126, 1990.
-
(1990)
Neural Computation
, vol.2
, pp. 116-126
-
-
Orfanidis, S.J.1
-
17
-
-
0000188120
-
Learning invariant from transformation sequences
-
P. Foldiak, “Learning invariant from transformation sequences,” Neural Computation, pp. 194–200, 1991.
-
(1991)
Neural Computation
, pp. 194-200
-
-
Foldiak, P.1
-
18
-
-
0039765605
-
Removing time variation with the anti-Hebbian differential synapse
-
G. Mitchison, “Removing time variation with the anti-Hebbian differential synapse,” Neural Computation, pp. 312–320, 1991.
-
(1991)
Neural Computation
, pp. 312-320
-
-
Mitchison, G.1
-
19
-
-
26444565569
-
Finding structure in time
-
J. L. Elman, “Finding structure in time,” Cognitive Sci., pp. 179–211, 1990.
-
(1990)
Cognitive Sci., pp
, pp. 179-211
-
-
Elman, J.L.1
-
20
-
-
0022013023
-
On stochastic approximation of eigenvectors and eigenvalues of the expectation of a random matrix
-
E. Oja and J. Karhunen, “On stochastic approximation of eigenvectors and eigenvalues of the expectation of a random matrix,” J. Math. Anal. Appl., vol. 106, pp. 69–84, 1985.
-
(1985)
J. Math. Anal. Appl.
, vol.106
, pp. 69-84
-
-
Oja, E.1
Karhunen, J.2
-
21
-
-
0020464111
-
A simplified neuron model as a principal component analyzer
-
E. Oja, “A simplified neuron model as a principal component analyzer,” J. Math. Biolog., vol. 15, pp. 267–273, 1982.
-
(1982)
J. Math. Biolog.
, vol.15
, pp. 267-273
-
-
Oja, E.1
-
22
-
-
0024883243
-
Optimal unsupervised learning in a single-layer linear feedforward neural network
-
T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural Networks, vol. 2, pp. 459–473, 1988.
-
(1988)
Neural Networks
, vol.2
, pp. 459-473
-
-
Sanger, T.D.1
-
23
-
-
33749699340
-
Adaptive network for optimal linear feature extraction
-
P. Foldiak, “Adaptive network for optimal linear feature extraction,” Neural Networks, vol. 2, pp. 459-473, 1988.
-
(1988)
Neural Networks
, vol.2
, pp. 459-473
-
-
Foldiak, P.1
-
24
-
-
0025623681
-
A neural network learning algorithm for adaptive principal component extraction (apex)
-
S. Y. Kung and K. I. Diamantaras, “A neural network learning algorithm for adaptive principal component extraction (apex),” in Proc. ICASSP, vol. 2, 1990, pp. 861–864.
-
(1990)
Proc. ICASSP
, vol.2
, pp. 861-864
-
-
Kung, S.Y.1
Diamantaras, K.I.2
-
25
-
-
0026386366
-
Linear neural networks which minimize the output variance
-
Seattle, WA
-
F. Palmieri and J. Zhu, “Linear neural networks which minimize the output variance,” in Proc. IJCNN, vol. 1, Seattle, WA, 1991, pp. 791–797.
-
(1991)
Proc. IJCNN
, vol.1
, pp. 791-797
-
-
Palmieri, F.1
Zhu, J.2
-
26
-
-
0002198379
-
Computational aspects of Bauer's simultaneous iteration method
-
H. Rutishause, “Computational aspects of Bauer's simultaneous iteration method,” Numer. Math., vol. 13, pp. 4–13, 1969.
-
(1969)
Numer. Math.
, vol.13
, pp. 4-13
-
-
Rutishause, H.1
-
27
-
-
0023331258
-
An introduction to computing with neural nets
-
Apr.
-
R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag., pp. 4–24, Apr. 1987.
-
(1987)
IEEE ASSP Mag., pp
, pp. 4-24
-
-
Lippmann, R.P.1
-
36
-
-
0020074887
-
Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex
-
E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex,” Neuroscience, pp. 32–48, 1982.
-
(1982)
Neuroscience
, pp. 32-48
-
-
Bienenstock, E.L.1
Cooper, L.N.2
Munro, P.W.3
-
37
-
-
0024732792
-
Connectionist learning procedure
-
G. E. Hinton, “Connectionist learning procedure,” Artificial Intell., pp. 185–234, 1989.
-
(1989)
Artificial Intell., pp
, pp. 185-234
-
-
Hinton, G.E.1
-
38
-
-
0001471775
-
Unsupervised learning
-
H. Barlow, “Unsupervised learning,” Neural Computation, pp. 295–311, 1989.
-
(1989)
Neural Computation
, pp. 295-311
-
-
Barlow, H.1
-
39
-
-
0001254586
-
Finding minimum entropy codes
-
H. Barlow, T. Kaushal, and G. J. Mitchison, “Finding minimum entropy codes,” Neural Computation, pp. 412–423, 1989.
-
(1989)
Neural Computation
, pp. 412-423
-
-
Barlow, H.1
Kaushal, T.2
Mitchison, G.J.3
|