메뉴 건너뛰기




Volumn 4, Issue 5, 1993, Pages 748-761

Anti-Hebbian Learning in Topologically Constrained Linear Networks: A Tutorial

Author keywords

[No Author keywords available]

Indexed keywords

CONSTRAINT THEORY; CORRELATION METHODS; ELECTRIC NETWORK TOPOLOGY; INFORMATION THEORY; LINEAR NETWORKS; MATHEMATICAL MODELS; NEURAL NETWORKS;

EID: 0027663185     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.248453     Document Type: Article
Times cited : (34)

References (39)
  • 1
  • 2
  • 3
    • 0000353243 scopus 로고
    • How to generate ordered maps by maximizing the mutual information between input and output signals
    • R. Linsker, “How to generate ordered maps by maximizing the mutual information between input and output signals,” Neural Computation, vol. 1, pp. 402—411, 1989.
    • (1989) Neural Computation , vol.1 , pp. 402-411
    • Linsker, R.1
  • 4
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Mar.
    • R. Linsker, “Self-organization in a perceptual network,” IEEE Comput. Mag., vol. 2, pp. 105–117, Mar. 1988.
    • (1988) IEEE Comput. Mag. , vol.2 , pp. 105-117
    • Linsker, R.1
  • 5
    • 84941438789 scopus 로고    scopus 로고
    • Hebbian learning in linear neural networks: A review
    • submitted for publication.
    • F. Palmieri and J. Zhu, “Hebbian learning in linear neural networks: A review,” IEEE Trans. Neural Networks, submitted for publication.
    • IEEE Trans. Neural Networks
    • Palmieri, F.1    Zhu, J.2
  • 6
    • 0002843256 scopus 로고
    • Adaptation and decorrelation in the cortex
    • R. Durbin, C. Miall, and G. Mitchinson, Eds. Reading, MA: Addison-Wesley
    • H. Barlow and P. Foldiak, “Adaptation and decorrelation in the cortex,” in The Computing Neuron, R. Durbin, C. Miall, and G. Mitchinson, Eds. Reading, MA: Addison-Wesley, 1989.
    • (1989) The Computing Neuron
    • Barlow, H.1    Foldiak, P.2
  • 7
    • 0042276165 scopus 로고
    • Differential Hebbian learning
    • B. Kosko, “Differential Hebbian learning,” in Proc. AIP Conf., vol. 157, 1986, pp. 277–288.
    • (1986) Proc. AIP Conf. , vol.157 , pp. 277-288
    • Kosko, B.1
  • 8
    • 0042276164 scopus 로고
    • A drive-reinforcement model of single neuron function: An alternative to the Hebbian neuronal model
    • A. H. Klopf, “A drive-reinforcement model of single neuron function: An alternative to the Hebbian neuronal model,” in Proc. AIP Conf., vol. 151, 1986, pp. 265–270.
    • (1986) Proc. AIP Conf. , vol.151 , pp. 265-270
    • Klopf, A.H.1
  • 14
    • 0026679034 scopus 로고
    • A comparison of two eigen-networks
    • Seattle, WA
    • F. Palmieri and J. Zhu, “A comparison of two eigen-networks,” in Proc. IJCNN, vol. 2, Seattle, WA, 1991, pp. 193–199.
    • (1991) Proc. IJCNN , vol.2 , pp. 193-199
    • Palmieri, F.1    Zhu, J.2
  • 15
    • 0038927359 scopus 로고
    • Gram-Schmidt neural nets
    • S. J. Orfanidis, “Gram-Schmidt neural nets,” Neural Computation, vol. 2, pp. 116–126, 1990.
    • (1990) Neural Computation , vol.2 , pp. 116-126
    • Orfanidis, S.J.1
  • 17
    • 0000188120 scopus 로고
    • Learning invariant from transformation sequences
    • P. Foldiak, “Learning invariant from transformation sequences,” Neural Computation, pp. 194–200, 1991.
    • (1991) Neural Computation , pp. 194-200
    • Foldiak, P.1
  • 18
    • 0039765605 scopus 로고
    • Removing time variation with the anti-Hebbian differential synapse
    • G. Mitchison, “Removing time variation with the anti-Hebbian differential synapse,” Neural Computation, pp. 312–320, 1991.
    • (1991) Neural Computation , pp. 312-320
    • Mitchison, G.1
  • 19
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, “Finding structure in time,” Cognitive Sci., pp. 179–211, 1990.
    • (1990) Cognitive Sci., pp , pp. 179-211
    • Elman, J.L.1
  • 20
    • 0022013023 scopus 로고
    • On stochastic approximation of eigenvectors and eigenvalues of the expectation of a random matrix
    • E. Oja and J. Karhunen, “On stochastic approximation of eigenvectors and eigenvalues of the expectation of a random matrix,” J. Math. Anal. Appl., vol. 106, pp. 69–84, 1985.
    • (1985) J. Math. Anal. Appl. , vol.106 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 21
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, “A simplified neuron model as a principal component analyzer,” J. Math. Biolog., vol. 15, pp. 267–273, 1982.
    • (1982) J. Math. Biolog. , vol.15 , pp. 267-273
    • Oja, E.1
  • 22
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural Networks, vol. 2, pp. 459–473, 1988.
    • (1988) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 23
    • 33749699340 scopus 로고
    • Adaptive network for optimal linear feature extraction
    • P. Foldiak, “Adaptive network for optimal linear feature extraction,” Neural Networks, vol. 2, pp. 459-473, 1988.
    • (1988) Neural Networks , vol.2 , pp. 459-473
    • Foldiak, P.1
  • 24
    • 0025623681 scopus 로고
    • A neural network learning algorithm for adaptive principal component extraction (apex)
    • S. Y. Kung and K. I. Diamantaras, “A neural network learning algorithm for adaptive principal component extraction (apex),” in Proc. ICASSP, vol. 2, 1990, pp. 861–864.
    • (1990) Proc. ICASSP , vol.2 , pp. 861-864
    • Kung, S.Y.1    Diamantaras, K.I.2
  • 25
    • 0026386366 scopus 로고
    • Linear neural networks which minimize the output variance
    • Seattle, WA
    • F. Palmieri and J. Zhu, “Linear neural networks which minimize the output variance,” in Proc. IJCNN, vol. 1, Seattle, WA, 1991, pp. 791–797.
    • (1991) Proc. IJCNN , vol.1 , pp. 791-797
    • Palmieri, F.1    Zhu, J.2
  • 26
    • 0002198379 scopus 로고
    • Computational aspects of Bauer's simultaneous iteration method
    • H. Rutishause, “Computational aspects of Bauer's simultaneous iteration method,” Numer. Math., vol. 13, pp. 4–13, 1969.
    • (1969) Numer. Math. , vol.13 , pp. 4-13
    • Rutishause, H.1
  • 27
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Apr.
    • R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag., pp. 4–24, Apr. 1987.
    • (1987) IEEE ASSP Mag., pp , pp. 4-24
    • Lippmann, R.P.1
  • 36
    • 0020074887 scopus 로고
    • Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex
    • E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex,” Neuroscience, pp. 32–48, 1982.
    • (1982) Neuroscience , pp. 32-48
    • Bienenstock, E.L.1    Cooper, L.N.2    Munro, P.W.3
  • 37
    • 0024732792 scopus 로고
    • Connectionist learning procedure
    • G. E. Hinton, “Connectionist learning procedure,” Artificial Intell., pp. 185–234, 1989.
    • (1989) Artificial Intell., pp , pp. 185-234
    • Hinton, G.E.1
  • 38
    • 0001471775 scopus 로고
    • Unsupervised learning
    • H. Barlow, “Unsupervised learning,” Neural Computation, pp. 295–311, 1989.
    • (1989) Neural Computation , pp. 295-311
    • Barlow, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.