메뉴 건너뛰기




Volumn 15, Issue 9, 1993, Pages 899-914

Figure-Ground Discrimination: A Combinatorial Optimization Approach

Author keywords

Feature grouping; figure ground discrimination; low level vision; mean field annealing; microcanonical annealing; recursive neural networks; simulated annealing; stochastic optimization theory; thresholding

Indexed keywords

APPROXIMATION THEORY; COMBINATORIAL MATHEMATICS; COMPUTER VISION; IMAGE CODING; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTIMIZATION; PATTERN RECOGNITION; RECURSIVE FUNCTIONS; STATISTICAL METHODS;

EID: 0027656539     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/34.232076     Document Type: Article
Times cited : (115)

References (29)
  • 1
    • 0001789533 scopus 로고
    • Stochastic stereo matching over scale
    • May
    • S. T. Barnard, “Stochastic stereo matching over scale,” Int. J. Comput. Vision, vol. 3, no. 1, pp. 17–32, May 1989.
    • (1989) Int. J. Comput. Vision , vol.3 , Issue.1 , pp. 17-32
    • Barnard, S.T.1
  • 2
    • 0024480752 scopus 로고
    • Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction
    • Jan.
    • A. Blake, “Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction,” IEEE Trans. Patt. Anal. Machine Intell., vol. 11, no. 1, pp. 2–12, Jan. 1989.
    • (1989) IEEE Trans. Patt. Anal. Machine Intell. , vol.11 , Issue.1 , pp. 2-12
    • Blake, A.1
  • 4
    • 0021496939 scopus 로고
    • Smoothed local symmetries and their implementation
    • M. Brady and H. Asada, “Smoothed local symmetries and their implementation,” Int. J. Robotics Res., vol. 3, no. 3, pp. 36–61, 1984.
    • (1984) Int. J. Robotics Res. , vol.3 , Issue.3 , pp. 36-61
    • Brady, M.1    Asada, H.2
  • 5
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • Nov.
    • J. Canny, “A computational approach to edge detection,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986.
    • (1986) IEEE Trans. Patt. Anal. Machine Intell. , vol.PAMI-8 , Issue.6 , pp. 679-698
    • Canny, J.1
  • 6
    • 0022149755 scopus 로고
    • Image processing by simulated annealing
    • Nov.
    • P. Camevali, L. Coletti, and S. Patamello, “Image processing by simulated annealing,” IBM J. Res. Development, vol. 29, no. 6, pp 569–579, Nov. 1985.
    • (1985) IBM J. Res. Development , vol.29 , Issue.6 , pp. 569-579
    • Camevali, P.1    Coletti, L.2    Patamello, S.3
  • 7
    • 0000557257 scopus 로고
    • Microcanonical Monte carlo simulation
    • May
    • M. Creutz, “Microcanonical Monte carlo simulation,” Phys. Rev. Lett., vol. 50, no. 19, pp. 1411–1414, May 1983.
    • (1983) Phys. Rev. Lett. , vol.50 , Issue.19 , pp. 1411-1414
    • Creutz, M.1
  • 8
    • 34250098710 scopus 로고
    • Using Canny’s criteria to derive a recursively implemented optimal edge detector
    • R. Deriche, “Using Canny’s criteria to derive a recursively implemented optimal edge detector,” Int. J. Comput. Vision, vol. 1, no. 2, pp. 167–187, 1987.
    • (1987) Int. J. Comput. Vision , vol.1 , Issue.2 , pp. 167-187
    • Deriche, R.1
  • 9
    • 0026151642 scopus 로고
    • Parallel and deterministic algorithms from mrf’s: Surface reconstruction
    • May
    • D. Geiger and F. Girosi, “Parallel and deterministic algorithms from mrf’s: Surface reconstruction,” IEEE Trans. Patt. Anal. Machine Intell, vol. 13, no. 5, pp. 410–412, May 1991.
    • (1991) IEEE Trans. Patt. Anal. Machine Intell. , vol.13 , Issue.5 , pp. 410-412
    • Geiger, D.1    Girosi, F.2
  • 10
    • 0026201666 scopus 로고
    • A common framework for image segmentation
    • D. Geiger and A. Yuille, “A common framework for image segmentation,” Int. J. Comput. Vision, vol. 6, no. 3, pp. 227–243, 1991.
    • (1991) Int. J. Comput. Vision , vol.6 , Issue.3 , pp. 227-243
    • Geiger, D.1    Yuille, A.2
  • 11
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and bayesian restorarion of images
    • S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and bayesian restorarion of images,” IEEE Trans. Patt. Anal. Machine Intell, vol. PAMI-6, pp. 721–741, 1984.
    • (1984) IEEE Trans. Patt. Anal. Machine Intell. , vol.PAMI-6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 13
    • 0342483701 scopus 로고
    • Neural networks and graph K-partitioning
    • Dec.
    • L. Herault and J. J. Niez, “Neural networks and graph K-partitioning,” Complex Syst., vol. 3, no. 6, pp. 531–576, Dec. 1989.
    • (1989) Complex Syst. , vol.3 , Issue.6 , pp. 531-576
    • Herault, L.1    Niez, J.J.2
  • 14
    • 0010266113 scopus 로고
    • Neural networks and combinatorial optimization: A study of NP-complete graph problems
    • (E. Gelembe, Ed.). Amsterdam: North Holland
    • L. Herault and J. J. Niez, “Neural networks and combinatorial optimization: A study of NP-complete graph problems,” in Neural Networks: Advances and Applications (E. Gelembe, Ed.). Amsterdam: North Holland, 1991, pp. 165–213.
    • (1991) Neural Networks: Advances and Applications , pp. 165-213
    • Herault, L.1    Niez, J.J.2
  • 15
    • 34250090755 scopus 로고
    • Snakes: Active contour models
    • Jan.
    • M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. J. Comput. Vision, vol. 1, no. 4, pp. 321–331, Jan. 1988.
    • (1988) Int. J. Comput. Vision , vol.1 , Issue.4 , pp. 321-331
    • Kass, M.1    Witkin, A.2    Terzopoulos, D.3
  • 16
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Sci., vol. 220, pp. 671–680, 1983.
    • (1983) Sci. , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 19
    • 0022118450 scopus 로고
    • Mean field theory for optimization problems
    • Sept.
    • H. Orland, “Mean field theory for optimization problems,” J. Phys.—Lett., vol. 46, no. 17, pp. L-763-L-770, Sept. 1985.
    • (1985) J. Phys. Lett. , vol.46 , Issue.17 , pp. L-763-L-770
    • Orland, H.1
  • 20
    • 0024715987 scopus 로고
    • Trace inference, curvature consistency, and curve detection
    • Aug.
    • P. Parent and S. W. Zucker, “Trace inference, curvature consistency, and curve detection,” IEEE Trans. Patt. Anal. Machine Intell, vol. 11, no. 8, pp. 823–839, Aug. 1989.
    • (1989) IEEE Trans. Patt. Anal. Machine Intell. , vol.11 , Issue.8 , pp. 823-839
    • Parent, P.1    Zucker, S.W.2
  • 21
    • 0002259425 scopus 로고
    • A new method for mapping optimization problems onto neural networks
    • C. Peterson, “A new method for mapping optimization problems onto neural networks,” Int. J. Neural Syst., vol. 1, no. 1, pp. 3–22, 1989.
    • (1989) Int. J. Neural Syst. , vol.1 , Issue.1 , pp. 3-22
    • Peterson, C.1
  • 22
    • 0024701127 scopus 로고
    • Track finding with neural networks
    • C. Peterson, “Track finding with neural networks,” Nuclear Instrum. Methods Phys. Res., vol. A279, pp. 537–545, 1989.
    • (1989) Nuclear Instrum. Methods Phys. Res. , vol.A279 , pp. 537-545
    • Peterson, C.1
  • 23
    • 0001406440 scopus 로고
    • A mean field learning algorithm for neural networks
    • C. Peterson and J. R. Anderson, “A mean field learning algorithm for neural networks,” Complex Syst., vol. 1, pp. 995–1019, 1987.
    • (1987) Complex Syst. , vol.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.R.2
  • 25
    • 0001041366 scopus 로고
    • Separating figure from ground with a Boltzmann machine
    • (M. Arbib and A. Hanson, Eds.). Cambridge, MA: MIT Press
    • T. J. Sejnowski and G. E. Hinton, “Separating figure from ground with a Boltzmann machine,” in Vision, Brain, and Cooperative Computation (M. Arbib and A. Hanson, Eds.). Cambridge, MA: MIT Press, 1988, pp. 703–724.
    • (1988) Vision Brain and Cooperative Computation , pp. 703-724
    • Sejnowski, T.J.1    Hinton, G.E.2
  • 26
    • 0024168435 scopus 로고
    • Structural saiiency: The detection of globally salient structures using a locally connected network
    • (Tampa, FL), Dec.
    • A. Sha’ashua and S. Ullman, “Structural saiiency: The detection of globally salient structures using a locally connected network,” in Proc. IEEE Int. Conf Comput. Vision (Tampa, FL), Dec. 1988, pp. 321–327.
    • (1988) Proc. IEEE Int. Conf Comput. Vision , pp. 321-327
    • Sha’ashua, A.1    Ullman, S.2
  • 27
    • 0003999855 scopus 로고
    • Introduction to Phases Transitions and Critical Phenomena
    • Oxford, UK: Oxford University Press
    • H. E. Stanley, Introduction to Phases Transitions and Critical Phenomena. Oxford, UK: Oxford University Press, 1971.
    • (1971)
    • Stanley, H.E.1
  • 28
    • 0024944616 scopus 로고
    • Graph partitioning using annealed neural networks
    • (Washington DC), June
    • D. E. Van den Bout and T. K. Miller, “Graph partitioning using annealed neural networks,” in Proc. Int. Joint Conf. Neural Networks (Washington DC), June 1989, pp. 521–528.
    • (1989) Proc. Int. Joint Conf. Neural Networks , pp. 521-528
    • Van den Bout, D.E.1    Miller, T.K.2
  • 29
    • 0025592276 scopus 로고
    • Mean field approximation using compound Gauss-Markov random field for edge detection and image restoration
    • (Alburquerque, NM), Apr.
    • J. Zerubia and R. Chellappa, “Mean field approximation using compound Gauss-Markov random field for edge detection and image restoration,” io Proc. ICASSP (Alburquerque, NM), 1990, pp. 2193–2196, Apr. 1990.
    • (1990) Proc. ICASSP , pp. 2193-2196
    • Zerubia, J.1    Chellappa, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.