메뉴 건너뛰기




Volumn 40, Issue 9, 1993, Pages 877-885

ECG Compression Using Long-Term Prediction

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA COMPRESSION; DATABASE SYSTEMS;

EID: 0027655722     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/10.245608     Document Type: Article
Times cited : (168)

References (26)
  • 1
    • 0018654281 scopus 로고
    • Compression of the ECG by prediction or interpolation and entropy encoding
    • U. E. Ruttiman and H. V. Pipberger, “Compression of the ECG by prediction or interpolation and entropy encoding,” IEEE Trans. Biomed. Eng., vol. BME-26, pp. 613–623, 1979.
    • (1979) IEEE Trans. Biomed. Eng. , vol.BME-26 , pp. 613-623
    • Ruttiman, U.E.1    Pipberger, H.V.2
  • 2
    • 0018195463 scopus 로고
    • Arrhythmia detection software for an ambulatory ECG monitor
    • W. C. Mueller, “Arrhythmia detection software for an ambulatory ECG monitor,” Biomed. Sci. Inst., vol. 14, pp. 81–85, 1978.
    • (1978) Biomed. Sci. Inst. , vol.14 , pp. 81-85
    • Mueller, W.C.1
  • 3
    • 0014274098 scopus 로고
    • AZTEC, A preprocessing program for real time ECG rhythm analysis
    • J. R. Cox, F. M. Nolle, H. A. Fozzard, and G. C. Oliver, “AZTEC, A preprocessing program for real time ECG rhythm analysis,” IEEE Trans. Biomed. Eng., vol. BME-15, pp. 128–129, 1968.
    • (1968) IEEE Trans. Biomed. Eng. , vol.BME-15 , pp. 128-129
    • Cox, J.R.1    Nolle, F.M.2    Fozzard, H.A.3    Oliver, G.C.4
  • 4
    • 0024024824 scopus 로고
    • An adaptive real time ECG compression algorithm with variable threshold
    • B. Fuhrt and A. Perez, “An adaptive real time ECG compression algorithm with variable threshold,” IEEE Trans. Biomed. Eng., vol. 35, pp 489–494, 1988.
    • (1988) IEEE Trans. Biomed. Eng. , vol.35 , pp. 489-494
    • Fuhrt, B.1    Perez, A.2
  • 5
    • 0019999628 scopus 로고
    • A new data reduction algorithm for real time ECG analysis
    • J. P. Aberstein and W. J. Tompkins, “A new data reduction algorithm for real time ECG analysis,” IEEE Trans. Biomed. Eng., vol. BME-29, pp. 43–48, 1982.
    • (1982) IEEE Trans. Biomed. Eng. , vol.BME-29 , pp. 43-48
    • Aberstein, J.P.1    Tompkins, W.J.2
  • 7
    • 0026128978 scopus 로고
    • Slope—A real time ECG data compressor
    • S. C. Tai, “Slope—A real time ECG data compressor,” Med. Biol. Eng. Comput., vol. 29, pp. 175–179, 1991.
    • (1991) Med. Biol. Eng. Comput. , vol.29 , pp. 175-179
    • Tai, S.C.1
  • 8
    • 0018357261 scopus 로고
    • Analysis of ECG data for data compression
    • M. Shridharand and M. F. Stevens, “Analysis of ECG data for data compression,” Int. J. Bio-Med. Comput., vol. 10, pp. 113–128, 1979.
    • (1979) Int. J. Bio-Med. Comput. , vol.10 , pp. 113-128
    • Shridharand, M.1    Stevens, M.F.2
  • 9
    • 0022559433 scopus 로고
    • ECG data compression using Fourier descriptions
    • B. R. Shankara and I. S. N. Murthy, “ECG data compression using Fourier descriptions,” IEEE Trans. Biomed Eng., vol. BME-33, pp. 428–434, 1986.
    • (1986) IEEE Trans. Biomed Eng. , vol.BME-33 , pp. 428-434
    • Shankara, B.R.1    Murthy, I.S.N.2
  • 11
    • 0020783619 scopus 로고
    • Fast Walsh transform data compression algorithm for ECG applications
    • W. S. Kuklinski, “Fast Walsh transform data compression algorithm for ECG applications,” Med. Biol. Eng. Comput., vol. 21, pp. 465–73, 1983.
    • (1983) Med. Biol. Eng. Comput. , vol.21 , pp. 465-473
    • Kuklinski, W.S.1
  • 14
    • 0025485912 scopus 로고
    • Data compression of the ECG using neural network for digital Holter monitor
    • Sept.
    • A. Iwata, Y. Nagasaka, and N. Suzumura, “Data compression of the ECG using neural network for digital Holter monitor,” IEEE Eng. Med Biolo. Mag., pp. 53–57, Sept. 1990.
    • (1990) IEEE Eng. Med Biolo. Mag. , pp. 53-57
    • Iwata, A.1    Nagasaka, Y.2    Suzumura, N.3
  • 16
    • 0022094190 scopus 로고
    • Comparison of methods for adaptive sampling of cardiac electrograms and ECG's
    • S. M. Blanchard and R. C. Barr, “Comparison of methods for adaptive sampling of cardiac electrograms and ECG's, Med. Biol. Eng. Comput., vol. 23, pp. 377–386, 1985.
    • (1985) Med. Biol. Eng. Comput. , vol.23 , pp. 377-386
    • Blanchard, S.M.1    Barr, R.C.2
  • 17
    • 0026122885 scopus 로고
    • Compression of ambulatory ECG by average beat subtraction and residual differencing
    • P. S. Hamilton and W. J. Tompkins, “Compression of ambulatory ECG by average beat subtraction and residual differencing,” IEEE Trans. Biomed. Eng., vol. 38, pp. 253–259, 1991.
    • (1991) IEEE Trans. Biomed. Eng. , vol.38 , pp. 253-259
    • Hamilton, P.S.1    Tompkins, W.J.2
  • 19
    • 0016495091 scopus 로고
    • Linear prediction: A tutorial review
    • J. Makhoul, “Linear prediction: A tutorial review,” Proc. IEEE, vol. 63, pp. 561–580, 1975.
    • (1975) Proc. IEEE , vol.63 , pp. 561-580
    • Makhoul, J.1
  • 20
    • 84986851033 scopus 로고
    • On the selection of subset autoregressive time series models
    • V. Haggan and O. B. Oyetunji, “On the selection of subset autoregressive time series models,” J. Time Ser. Anal., vol. 5, pp. 103–113, 1984.
    • (1984) J. Time Ser. Anal. , vol.5 , pp. 103-113
    • Haggan, V.1    Oyetunji, O.B.2
  • 22
    • 0024634588 scopus 로고
    • Amplitude optimization and pitch prediction in multipulse coders
    • S. Singhal and B. S. Atal, “Amplitude optimization and pitch prediction in multipulse coders,” IEEE Trans. Acoust., Speech, Signal Processing. vol. 37, pp. 317–327, 1989.
    • (1989) IEEE Trans. Acoust., Speech, Signal Processing , vol.37 , pp. 317-327
    • Singhal, S.1    Atal, B.S.2
  • 23
    • 0022219187 scopus 로고
    • Code excited linear prediction (CELP): High quality speech at very low bit rates
    • paper 25.1.1
    • M. R. Schroeder and B. S. Atal, “Code excited linear prediction (CELP): High quality speech at very low bit rates,” in Proc. ICASSP, vol. 1, 1985, paper 25.1.1.
    • (1985) Proc. ICASSP , vol.1
    • Schroeder, M.R.1    Atal, B.S.2
  • 24
    • 84981426365 scopus 로고
    • A methodology for selecting subset autoregressive time series models
    • G.-H. Yu and Y.-C. Lin, “A methodology for selecting subset autoregressive time series models,” J. Time Ser. Anal., vol. 12, pp. 363–373, 1991.
    • (1991) J. Time Ser. Anal. , vol.12 , pp. 363-373
    • Yu, G.-H.1    Lin, Y.-C.2
  • 25
    • 0021461851 scopus 로고
    • Software QRS detection in ambulatory monitoring—A review
    • A. Pahlm and L. Sommo, “Software QRS detection in ambulatory monitoring—A review,” Med. Biol. Eng. Comput., vol. 22, pp. 289–297, 1984.
    • (1984) Med. Biol. Eng. Comput. , vol.22 , pp. 289-297
    • Pahlm, A.1    Sommo, L.2
  • 26
    • 0020332058 scopus 로고
    • Adaptive QRS detection based on maximum-posteriori estimation
    • P. O. Borgesson, O. Pahlm, L. Sommo, and M. E. Nygards, “Adaptive QRS detection based on maximum-posteriori estimation,” IEEE Trans. Biomed. Eng., vol. BME-29, pp. 341–351, 1982.
    • (1982) IEEE Trans. Biomed. Eng. , vol.BME-29 , pp. 341-351
    • Borgesson, P.O.1    Pahlm, O.2    Sommo, L.3    Nygards, M.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.