메뉴 건너뛰기




Volumn 28, Issue 8, 1993, Pages 907-914

Analog CMOS Deterministic Boltzmann Circuits

Author keywords

[No Author keywords available]

Indexed keywords

NEURAL NETWORKS;

EID: 0027641150     PISSN: 00189200     EISSN: 1558173X     Source Type: Journal    
DOI: 10.1109/4.231327     Document Type: Article
Times cited : (27)

References (21)
  • 1
    • 0010545787 scopus 로고
    • Relaxation networks for large supervised learning problems
    • J. Alspector, R. B. Allen, and A. Jayakumar, “Relaxation networks for large supervised learning problems,” Adv. Neural Info. Proc. Syst., vol. 3, pp. 1015–1021, 1991.
    • (1991) Adv. Neural Info. Proc. Syst. , vol.3 , pp. 1015-1021
    • Alspector, J.1    Allen, R.B.2    Jayakumar, A.3
  • 2
    • 0026138626 scopus 로고
    • A self-learning neural network chip with 125 neurons and 10K self-organization synapses
    • Y. Arima etal., “A self-learning neural network chip with 125 neurons and 10K self-organization synapses,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 607–611, 1991.
    • (1991) IEEE J. Solid-State Circuits , vol.26 , Issue.4 , pp. 607-611
    • Arima, Y.1
  • 3
    • 2342617231 scopus 로고    scopus 로고
    • Deterministic Boltzmann learning in networks with asymmetric connectivity
    • D. S. Touretzky et. al., Eds.
    • C. Galland and G. E. Hinton, “Deterministic Boltzmann learning in networks with asymmetric connectivity,” in ConnectionistModels: Proc. 1990 Summer School, D. S. Touretzky et al., Eds., pp. 3–9.
    • ConnectionistModels: Proc. 1990 Summer School , pp. 3-9
    • Galland, C.1    Hinton, G.E.2
  • 4
    • 0016336559 scopus 로고
    • A high-performance monolithic multiplier using active feedback
    • B. Gilbert, “A high-performance monolithic multiplier using active feedback,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 364–373, 1974.
    • (1974) IEEE J. Solid-State Circuits , vol.SC-9 , pp. 364-373
    • Gilbert, B.1
  • 5
    • 0001590282 scopus 로고
    • Deterministic Boltzmann learning performs steepest descent in weight space
    • G. E. Hinton, “Deterministic Boltzmann learning performs steepest descent in weight space,” Neural Computation, vol. 1, no. 1, pp. 143–150, 1989.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 143-150
    • Hinton, G.E.1
  • 6
    • 0006619664 scopus 로고
    • Using fast weights to deblur old memories
    • (Seattle, WA)
    • G. E. Hinton and D. C. Plaut, “Using fast weights to deblur old memories,” in Proc. Cognitive Sciences Conf. (Seattle, WA), 1987, pp. 177–186.
    • (1987) Proc. Cognitive Sciences Conf. , pp. 177-186
    • Hinton, G.E.1    Plaut, D.C.2
  • 7
    • 0024909727 scopus 로고
    • An electrically trainable aritifical neural network with 10240 floating gate synapses
    • M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable aritifical neural network with 10240 floating gate synapses,” in Proc. 1989 Int. Joint Conf. Neural Networks, 1989, pp. II-191–196.
    • (1989) Proc. 1989 Int. Joint Conf. Neural Networks , pp. II-191-II-196
    • Holler, M.1    Tam, S.2    Castro, H.3    Benson, R.4
  • 8
    • 0004469897 scopus 로고
    • Neurons with graded response have collective properties like those of two-state neurons
    • J. Hopfield, “Neurons with graded response have collective properties like those of two-state neurons,” Proc. Nat. Acad. Sci., vol. 81, pp. 3088–3092, 1984.
    • (1984) Proc. Nat. Acad. Sci. , vol.81 , pp. 3088-3092
    • Hopfield, J.1
  • 11
    • 0002852592 scopus 로고    scopus 로고
    • Contrastive Hebbian learning in the continuous Hopfield model
    • D. S. Touretzky et. al., Eds.
    • J. R. Movellan, “Contrastive Hebbian learning in the continuous Hopfield model,” in Connectionist Models: Proc. 1990 Summer School, D. S. Touretzky et al., Eds., pp. 10–17.
    • Connectionist Models: Proc. 1990 Summer School , pp. 10-17
    • Movellan, J.R.1
  • 12
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural networks
    • C. Peterson and J. R. Anderson, “A mean field theory learning algorithm for neural networks,” Complex Syst., no. 1, pp. 995–1019, 1987.
    • (1987) Complex Syst. , Issue.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.R.2
  • 13
    • 0024901271 scopus 로고
    • Explorations of the mean field theory learning algorithm
    • C. Peterson and E. Hartman, “Explorations of the mean field theory learning algorithm,” Neural Networks, vol. 2, pp. 475–494, 1989.
    • (1989) Neural Networks , vol.2 , pp. 475-494
    • Peterson, C.1    Hartman, E.2
  • 15
    • 0026140324 scopus 로고
    • Analog CMOS Hebbian synapses
    • C. R. Schneider and H. C. Card, “Analog CMOS Hebbian synapses,” Electron Lett., vol. 27, pp. 785–786, 1991.
    • (1991) Electron Lett. , vol.27 , pp. 785-786
    • Schneider, C.R.1    Card, H.C.2
  • 16
    • 0026386918 scopus 로고
    • CMOS implementation of analog Hebbian synaptic learning circuits
    • (Seattle) July
    • C. R. Schneider and H. C. Card, “CMOS implementation of analog Hebbian synaptic learning circuits,” in Proc. IJCNN (Seattle), vol. 1, July 1991, pp. 437–442.
    • (1991) Proc. IJCNN , vol.1 , pp. 437-442
    • Schneider, C.R.1    Card, H.C.2
  • 21
    • 0026260029 scopus 로고
    • A 336-neuron, 28K-synapse, self-learning neural network chip with branch neuron unit architecture
    • Y. Arima et al., “A 336-neuron, 28K-synapse, self-learning neural network chip with branch neuron unit architecture,” IEEE J. Solid-State Circuits, vol. 26, no. 11, pp. 1637–1644, 1991.
    • (1991) IEEE J. Solid-State Circuits , vol.26 , Issue.11 , pp. 1637-1644
    • Arima, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.