-
1
-
-
0010545787
-
Relaxation networks for large supervised learning problems
-
J. Alspector, R. B. Allen, and A. Jayakumar, “Relaxation networks for large supervised learning problems,” Adv. Neural Info. Proc. Syst., vol. 3, pp. 1015–1021, 1991.
-
(1991)
Adv. Neural Info. Proc. Syst.
, vol.3
, pp. 1015-1021
-
-
Alspector, J.1
Allen, R.B.2
Jayakumar, A.3
-
2
-
-
0026138626
-
A self-learning neural network chip with 125 neurons and 10K self-organization synapses
-
Y. Arima etal., “A self-learning neural network chip with 125 neurons and 10K self-organization synapses,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 607–611, 1991.
-
(1991)
IEEE J. Solid-State Circuits
, vol.26
, Issue.4
, pp. 607-611
-
-
Arima, Y.1
-
3
-
-
2342617231
-
Deterministic Boltzmann learning in networks with asymmetric connectivity
-
D. S. Touretzky et. al., Eds.
-
C. Galland and G. E. Hinton, “Deterministic Boltzmann learning in networks with asymmetric connectivity,” in ConnectionistModels: Proc. 1990 Summer School, D. S. Touretzky et al., Eds., pp. 3–9.
-
ConnectionistModels: Proc. 1990 Summer School
, pp. 3-9
-
-
Galland, C.1
Hinton, G.E.2
-
4
-
-
0016336559
-
A high-performance monolithic multiplier using active feedback
-
B. Gilbert, “A high-performance monolithic multiplier using active feedback,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 364–373, 1974.
-
(1974)
IEEE J. Solid-State Circuits
, vol.SC-9
, pp. 364-373
-
-
Gilbert, B.1
-
5
-
-
0001590282
-
Deterministic Boltzmann learning performs steepest descent in weight space
-
G. E. Hinton, “Deterministic Boltzmann learning performs steepest descent in weight space,” Neural Computation, vol. 1, no. 1, pp. 143–150, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.1
, pp. 143-150
-
-
Hinton, G.E.1
-
6
-
-
0006619664
-
Using fast weights to deblur old memories
-
(Seattle, WA)
-
G. E. Hinton and D. C. Plaut, “Using fast weights to deblur old memories,” in Proc. Cognitive Sciences Conf. (Seattle, WA), 1987, pp. 177–186.
-
(1987)
Proc. Cognitive Sciences Conf.
, pp. 177-186
-
-
Hinton, G.E.1
Plaut, D.C.2
-
7
-
-
0024909727
-
An electrically trainable aritifical neural network with 10240 floating gate synapses
-
M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable aritifical neural network with 10240 floating gate synapses,” in Proc. 1989 Int. Joint Conf. Neural Networks, 1989, pp. II-191–196.
-
(1989)
Proc. 1989 Int. Joint Conf. Neural Networks
, pp. II-191-II-196
-
-
Holler, M.1
Tam, S.2
Castro, H.3
Benson, R.4
-
8
-
-
0004469897
-
Neurons with graded response have collective properties like those of two-state neurons
-
J. Hopfield, “Neurons with graded response have collective properties like those of two-state neurons,” Proc. Nat. Acad. Sci., vol. 81, pp. 3088–3092, 1984.
-
(1984)
Proc. Nat. Acad. Sci.
, vol.81
, pp. 3088-3092
-
-
Hopfield, J.1
-
9
-
-
0001940458
-
Adaptive mixtures of local experts
-
R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of local experts,” Neural Computation, vol. 3, no. 1, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.1
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
11
-
-
0002852592
-
Contrastive Hebbian learning in the continuous Hopfield model
-
D. S. Touretzky et. al., Eds.
-
J. R. Movellan, “Contrastive Hebbian learning in the continuous Hopfield model,” in Connectionist Models: Proc. 1990 Summer School, D. S. Touretzky et al., Eds., pp. 10–17.
-
Connectionist Models: Proc. 1990 Summer School
, pp. 10-17
-
-
Movellan, J.R.1
-
12
-
-
0001406440
-
A mean field theory learning algorithm for neural networks
-
C. Peterson and J. R. Anderson, “A mean field theory learning algorithm for neural networks,” Complex Syst., no. 1, pp. 995–1019, 1987.
-
(1987)
Complex Syst.
, Issue.1
, pp. 995-1019
-
-
Peterson, C.1
Anderson, J.R.2
-
13
-
-
0024901271
-
Explorations of the mean field theory learning algorithm
-
C. Peterson and E. Hartman, “Explorations of the mean field theory learning algorithm,” Neural Networks, vol. 2, pp. 475–494, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 475-494
-
-
Peterson, C.1
Hartman, E.2
-
15
-
-
0026140324
-
Analog CMOS Hebbian synapses
-
C. R. Schneider and H. C. Card, “Analog CMOS Hebbian synapses,” Electron Lett., vol. 27, pp. 785–786, 1991.
-
(1991)
Electron Lett.
, vol.27
, pp. 785-786
-
-
Schneider, C.R.1
Card, H.C.2
-
16
-
-
0026386918
-
CMOS implementation of analog Hebbian synaptic learning circuits
-
(Seattle) July
-
C. R. Schneider and H. C. Card, “CMOS implementation of analog Hebbian synaptic learning circuits,” in Proc. IJCNN (Seattle), vol. 1, July 1991, pp. 437–442.
-
(1991)
Proc. IJCNN
, vol.1
, pp. 437-442
-
-
Schneider, C.R.1
Card, H.C.2
-
17
-
-
3042888376
-
Analog CMOS circuits for artificial neural networks
-
Ph.D. dissertation
-
R. Schneider, Ph.D. dissertation, “Analog CMOS circuits for artificial neural networks,” Dept. Elect, and Comp. Engg., Univ. of Manitoba, Winnipeg, Man., Canada, 1991.
-
(1991)
Dept. Elect, and Comp. Engg., Univ. of Manitoba, Winnipeg, Man., Canada
-
-
Schneider, R.1
-
18
-
-
0024647086
-
A programmable analog neural network chip
-
D. B. Schwartz, R. E. Howard, and W. E. Hubbard, “A programmable analog neural network chip,” IEEE J. Solid-State Circuits, vol. 24, no. 2, 313–319, 1989.
-
(1989)
IEEE J. Solid-State Circuits
, vol.24
, Issue.2
, pp. 313-319
-
-
Schwartz, D.B.1
Howard, R.E.2
Hubbard, W.E.3
-
19
-
-
85033320885
-
Artificial neural network implementation with floating gate MOS devices
-
(San Diego, CA), P. Mueller, Ed., Jan. 14–15
-
P. A. Shoemaker, I. Lagnado, and R. Shimabukuro, “Artificial neural network implementation with floating gate MOS devices,” in Proc. Hardware Implementations Neuron Nets and Synapses, NSF/ONR Workshop (San Diego, CA), P. Mueller, Ed., Jan. 14–15, 1988, pp. 114–119.
-
(1988)
Proc. Hardware Implementations Neuron Nets and Synapses, NSF/ONR Workshop
, pp. 114-119
-
-
Shoemaker, P.A.1
Lagnado, I.2
Shimabukuro, R.3
-
21
-
-
0026260029
-
A 336-neuron, 28K-synapse, self-learning neural network chip with branch neuron unit architecture
-
Y. Arima et al., “A 336-neuron, 28K-synapse, self-learning neural network chip with branch neuron unit architecture,” IEEE J. Solid-State Circuits, vol. 26, no. 11, pp. 1637–1644, 1991.
-
(1991)
IEEE J. Solid-State Circuits
, vol.26
, Issue.11
, pp. 1637-1644
-
-
Arima, Y.1
|