-
2
-
-
0020815483
-
Inductive inference: Theory and methods
-
Sept.
-
Angluin and Smith, “Inductive inference: Theory and methods,” ACM Comput. Surveys, vol. 15, no. 3, pp. 237-270, Sept. 1983.
-
(1983)
ACM Comput. Surveys
, vol.15
, Issue.3
, pp. 237-270
-
-
Angluin, A.1
Smith, S.2
-
4
-
-
0024732792
-
Connectionist learning procedures
-
G. E. Hinton, “Connectionist learning procedures,” Artificial Intell, vol. 40, pp. 185-234, 1989.
-
(1989)
Artificial Intell
, vol.40
, pp. 185-234
-
-
Hinton, G.E.1
-
5
-
-
0021518106
-
A theory of the learnable
-
L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27, pp. 1134-1142, 1984.
-
(1984)
Commun. ACM
, vol.27
, pp. 1134-1142
-
-
Valiant, L.G.1
-
6
-
-
0019033513
-
Pattern recognition as rule-guided inductive inference
-
July
-
R. S. Michalski, “Pattern recognition as rule-guided inductive inference,” IEEE Trans. Patt. Analy. Machine Intell., vol. PAMI-2, no. 4, pp. 349-361, July 1980.
-
(1980)
IEEE Trans. Patt. Analy. Machine Intell
, vol.PAMI-2
, Issue.4
, pp. 349-361
-
-
Michalski, R.S.1
-
8
-
-
0020857230
-
An N-Player sequential stochastic game with identical pay-offs
-
Nov.
-
K. S. Narendra and R. M. Wheeler, “An N-Player sequential stochastic game with identical pay-offs,” IEEE Trans. Syst. Man Cybern., vol. SMC-3, pp. 1154-1158, Nov. 1983.
-
(1983)
IEEE Trans. Syst. Man Cybern.
, vol.SMC-3
, pp. 1154-1158
-
-
Narendra, K.S.1
Wheeler, R.M.2
-
9
-
-
0001182408
-
The effect of noise on concept learning
-
(R. S. Michalski, et al., Eds.) San Francisco: Morgan Kaufman, ch. 6
-
J. S. Quinlan, “The effect of noise on concept learning,” in Machine Learning: An Artificial Intelligence Approach. (R. S. Michalski, et al., Eds.) San Francisco: Morgan Kaufman, 1986, pp. 149-166, ch. 6, vol. 2.
-
(1986)
Machine Learning: An Artificial Intelligence Approach
, vol.2
, pp. 149-166
-
-
Quinlan, J.S.1
-
11
-
-
3743116916
-
Stochastic automata models for concept learning
-
M.S. Thesis, Dept. Elec. Engg., Indian Inst. Sci., Bangalore, India, Mar.
-
S. R. Ranjan, “Stochastic automata models for concept learning,” M.S. Thesis, Dept. Elec. Engg., Indian Inst. Sci., Bangalore, India, Mar. 1989.
-
(1989)
-
-
Ranjan, S.R.1
-
12
-
-
84941540763
-
A parallel algorithm for concept learning
-
V. P. Bhatkar et al. New Delhi: Narosa
-
S. R. Ranjan and P. S. Sastry, “A parallel algorithm for concept learning,” in Frontiers in Parallel Computing, V. P. Bhatkar et al. New Delhi: Narosa, 1991, pp. 349-358.
-
(1991)
Frontiers in Parallel Computing
, pp. 349-358
-
-
Ranjan, S.R.1
Sastry, P.S.2
-
13
-
-
21544435137
-
Learning by statistical cooperation of self-interested Neuron-like computing elements
-
COINS Tech. Rept., Dept. of Comput. Inform. Sci., Univ. Massachusetts, Amherst, Apr.
-
A. G. Barto, “Learning by statistical cooperation of self-interested Neuron-like computing elements,” COINS Tech. Rept., Dept. of Comput. Inform. Sci., Univ. Massachusetts, Amherst, Apr. 1985.
-
(1985)
-
-
Barto, A.G.1
-
15
-
-
0023171016
-
Learning optimal discriminant functions through a co-operating team of automata
-
Jan.-Feb.
-
M. A. L. Thathachar and P. S. Sastry, “Learning optimal discriminant functions through a co-operating team of automata,” IEEE Trans. Syst., Man, Cybern., vol. SMC-17, no. 1, pp. 73-85, Jan.-Feb. 1987.
-
(1987)
IEEE Trans. Syst., Man, Cybern.
, vol.SMC-17
, Issue.1
, pp. 73-85
-
-
Thathachar, M.A.L.1
Sastry, P.S.2
-
16
-
-
84941527212
-
Learning automata models for concept learning
-
M.E. Thesis, Dept. of Elect. Eng., Indian Inst., of Sci., Bangalore, India, Jan.
-
K. Rajaraman, “Learning automata models for concept learning,” M.E. Thesis, Dept. of Elect. Eng., Indian Inst., of Sci., Bangalore, India, Jan. 1991.
-
(1991)
-
-
Rajaraman, K.1
-
17
-
-
84941540764
-
Group behavior of learning automata
-
M.E. Thesis, Dept. of Elect. Eng., Indian Inst. of Sci., Bangalore, India, Jan.
-
S. Mukhopadhyay, “Group behavior of learning automata,” M.E. Thesis, Dept. of Elect. Eng., Indian Inst. of Sci., Bangalore, India, Jan. 1987.
-
(1987)
-
-
Mukhopadhyay, S.1
-
18
-
-
0024082469
-
Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
-
D. Haussler, “Quantifying inductive bias: AI learning algorithms and Valiant's learning framework,” Artificial Intell., vol. 36, pp. 177-221, 1988.
-
(1988)
Artificial Intell.
, vol.36
, pp. 177-221
-
-
Haussler, D.1
|