메뉴 건너뛰기




Volumn 4, Issue 4, 1993, Pages 588-599

Paralleled Hardware Annealing for Optimal Solutions on Electronic Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

ASSOCIATIVE STORAGE; COMPUTER SIMULATION; COMPUTER SOFTWARE; ITERATIVE METHODS; OPTIMAL SYSTEMS; OPTIMIZATION; PARALLEL PROCESSING SYSTEMS; PATTERN RECOGNITION; PROBABILITY; TRANSFER FUNCTIONS;

EID: 0027629411     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.238314     Document Type: Article
Times cited : (20)

References (41)
  • 1
    • 0000988422 scopus 로고
    • Branch-and-bound methods: A survey
    • E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operation Res., vol. 14, no. 4, pp. 679–719, 1966.
    • (1966) Operation Res. , vol.14 , Issue.4 , pp. 679-719
    • Lawler, E.L.1    Wood, D.E.2
  • 2
    • 0019477279 scopus 로고
    • The Legrangian relaxation method for solving integer programming problems
    • M.L. Fisher, “The Legrangian relaxation method for solving integer programming problems,” Manag. Sci., vol. 27, no. 1, pp. 1–18, 1981.
    • (1981) Manag. Sci. , vol.27 , Issue.1 , pp. 1-18
    • Fisher, M.L.1
  • 4
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • May
    • S. Kirkpatrick, C. D. Gelatt, Jr., and M.P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 6
    • 0342294401 scopus 로고
    • Range image restoration using mean field annealing
    • San Mateo, CA: Morgan Kauffman Publishers
    • G. L. Bilbro and W. Snyder, “Range image restoration using mean field annealing,” in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kauffman Publishers, 1989, pp. 594–601.
    • (1989) Advances in Neural Information Processing Systems , pp. 594-601
    • Bilbro, G.L.1    Snyder, W.2
  • 7
    • 0024125849 scopus 로고
    • An investigation on local minima of Hopfield network for optimization circuits
    • July San Diego, CA
    • B. W. Lee and B. J. Sheu, “An investigation on local minima of Hopfield network for optimization circuits,” in IEEE Int. Conf. Neural Networks, San Diego, CA, July 1988, vol. I, pp. 45–51.
    • (1988) IEEE Int , vol.1 , pp. 45-51
    • Lee, B.W.1    Sheu, B.J.2
  • 8
    • 0025899865 scopus 로고
    • Modified Hopfield neural networks for retrieving the optimal solution
    • Jan.
    • B. W. Lee and B.J. Sheu, “Modified Hopfield neural networks for retrieving the optimal solution,” IEEE Trans. Neural Networks, vol. 2, pp. 137–142, Jan. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 137-142
    • Lee, B.W.1    Sheu, B.J.2
  • 9
    • 0025446460 scopus 로고
    • Graph partitioning using annealed neural networks
    • June
    • D. E. van den Bout and T. K. Miller, III, “Graph partitioning using annealed neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 192–203, June 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 192-203
    • van den Bout, D.E.1    Miller, T. K.2
  • 10
    • 0026679383 scopus 로고
    • Mean field annealing: A formalism for constructing GNC-like algorithms
    • Jan.
    • G. L. Bilbro, W. E. Snyder, S.J. Gamier, and J. W. Gault, “Mean field annealing: A formalism for constructing GNC-like algorithms,” IEEE Trans. Neural Networks, vol. 3, pp. 131–138, Jan. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 131-138
    • Bilbro, G.L.1    Snyder, W.E.2    Gamier, S.J.3    Gault, J.W.4
  • 11
    • 84941466870 scopus 로고    scopus 로고
    • An efficient algorithm for annealed neural networks with applications to optimization problems
    • A. Louri and H.J. Lee, “An efficient algorithm for annealed neural networks with applications to optimization problems,” IEEE Trans. Neural Networks, to be published.
    • IEEE Trans. Neural Networks to be published.
    • Louri, A.1    Lee, H.J.2
  • 12
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural networks
    • C. Peterson and J. R. Anderson, “A mean field theory learning algorithm for neural networks,” Complex Systems, vol. 1, no. 5, pp. 995–1019, 1987.
    • (1987) Complex Systems , vol.1 , Issue.5 , pp. 995-1019
    • Peterson, C.1    Anderson, J.R.2
  • 13
    • 84902304316 scopus 로고
    • Digital implementation issues of stochastic neural networks
    • Jan. Washington, DC
    • E.E. Pesulima, A. S. Pandya, and R. Shankar, “Digital implementation issues of stochastic neural networks,” in IEEE/INNS Inter. Joint Conf. Neural Networks Proc., vol. 2, Washington, DC, Jan. 1990, pp. 187–190.
    • (1990) IEEE/INNS Inter. Joint , vol.2 , pp. 187-190
    • Pesulima, E.E.1    Pandya, A.S.2    Shankar, R.3
  • 17
  • 18
    • 0024480849 scopus 로고
    • Simulated Annealing Algorithms: An Overview
    • Jan.
    • R. A. Rutenbar, “Simulated Annealing Algorithms: An Overview,” IEEE Circuits Devices Mag., vol. 5, no. 1, pp. 19–26, Jan. 1989.
    • (1989) IEEE Circuits Devices Mag. , vol.5 , Issue.1 , pp. 19-26
    • Rutenbar, R.A.1
  • 21
    • 0022288935 scopus 로고
    • Image restoration and segmentation using the annealing algorithm
    • Dec. Ft. Lauderdale, FL
    • E.D. Sontag and H.J. Sussann, “Image restoration and segmentation using the annealing algorithm,” in Proc. 24th Conf. Decision and Control, Ft. Lauderdale, FL, Dec. 1985, pp. 768–773.
    • (1985) Proc. 24th Conf. Decision and Control , pp. 768-773
    • Sontag, E.D.1    Sussann, H.J.2
  • 22
    • 0021518209 scopus 로고
    • Stochastic Relaxation, Gibbs distributions, and the Bayesian Restoration of Images
    • Nov.
    • S. Geman and D. Geman, “Stochastic Relaxation, Gibbs distributions, and the Bayesian Restoration of Images,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-6, pp. 721–741, Nov. 1984.
    • (1984) IEEE Trans. Patt. Anal. Machine Intell. , vol.PAMI-6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 24
    • 0024909727 scopus 로고
    • An electrically trainable artificial neural network (ETANN) with 10240 Float gate synapses
    • Washington, DC June
    • M. Holler, S. Tam, H. Castro, and R. Benson, “An electrically trainable artificial neural network (ETANN) with 10240 2018 Float gate synapses,” in IEEE/INNS Inter. Joint Conf. Neural Networks Proc., vol. 2, Washington, DC, June 1989, pp. 191–196.
    • (1989) IEEE/INNS Inter. Joint , vol.2 , pp. 191-196
    • Holler, M.1    Tam, S.2    Castro, H.3    Benson, R.4
  • 25
    • 0025450122 scopus 로고
    • A BiCMOS analog neural network with dynamically updated weights
    • San Francisco, CA Feb.
    • T. Morishita, Y. Tamura, and T. Otsuki, “A BiCMOS analog neural network with dynamically updated weights,” in Tech. Dig. IEEE Solid-State Circuits Conf, San Francisco, CA, Feb. 1990, pp. 142–143.
    • (1990) Tech. Dig. IEEE Solid-State Circuits Conf , pp. 142-143
    • Morishita, T.1    Tamura, Y.2    Otsuki, T.3
  • 27
    • 0025448693 scopus 로고
    • Learning of stable states in stochastic asymmetric networks
    • June
    • R. B. Allen and J. Alspector, “Learning  of stable states in stochastic asymmetric networks,” IEEE Trans. Neural Networks, vol. 1, pp. 233–238, June 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 233-238
    • Allen, R.B.1    Alspector, J.2
  • 28
    • 0025541485 scopus 로고
    • VLSI image processors using analog programmable synapses and neurons
    • San Diego, CA June
    • B.W. Lee, J.-C. Lee, and B.J. Sheu, “VLSI image processors using analog programmable synapses and neurons,” in IEEE Int. Joint Conf Neural Networks, vol. II, San Diego, CA, June 1990, pp. 575–580.
    • (1990) IEEE , vol.2 , pp. 575-580
    • Lee, B.W.1    Lee, J.-C.2    Sheu, B.J.3
  • 29
    • 0025445432 scopus 로고
    • Artificial neural networks using MOS analog multipliers
    • June
    • P.W. Hollis and J.J. Paulos, “Artificial neural networks using MOS analog multipliers,” IEEE J. Solid-State Circ., vol. 25, pp. 849–855, June 1990.
    • (1990) IEEE J. Solid-State Circ. , vol.25 , pp. 849-855
    • Hollis, P.W.1    Paulos, J.J.2
  • 30
    • 84911254853 scopus 로고
    • An analog neural network processor with programmable network topology
    • San Francisco, CA Feb.
    • B. E. Boser and E. Sackinger, “An analog neural network processor with programmable network topology,” in Tech. Dig. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, Feb. 1991, pp. 184–185.
    • (1991) Tech. Dig. IEEE Int. Solid-State Circuits , pp. 184-185
    • Boser, B.E.1    Sackinger, E.2
  • 32
    • 84939704058 scopus 로고
    • An analog neural network processor for self-organizing mapping
    • Feb.
    • B.J. Sheu, J. Choi, and C.-F. Chang, “An analog neural network processor for self-organizing mapping,” in Tech. Dig. IEEE Int. Solid-State Circuits Conf, San Francisco, CA, Feb. 1992, pp. 136–137, 266.
    • (1992) Tech. Dig. IEEE Int. Solid-State Circuits Conf , pp. 136-137
    • Sheu, B.J.1    Choi, J.2    Chang, C.-F.3
  • 33
    • 84869991196 scopus 로고
    • A cascadable neural network chip set with on-chip learning using noise and gain annealing
    • May
    • A Jayakumar and J. Alspector, “A cascadable neural network chip set with on-chip learning using noise and gain annealing,” in Proc. IEEE Custom Integrated Circuits, Boston, MA, May 1992, pp. 19.9.1-4.
    • (1992) Proc. IEEE Custom Integrated Circuits , pp. 14-19
    • Jayakumar, A.1    Alspector, J.2
  • 34
    • 0022721216 scopus 로고
    • Simple ' ‘ neural ’ optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit
    • May
    • D. W. Tank and J.J. Hopfield, “Simple ' ‘neural’ optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit,” IEEE Trans. Circ. Syst., vol. CAS-33, pp. 533–541, May 1986.
    • (1986) IEEE Trans. Circ. Syst. , vol.CAS-33 , pp. 533-541
    • Tank, D.W.1    Hopfield, J.J.2
  • 35
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • May
    • J.J. Hopfield, “Neurons with graded response have collective computational properties like those of two-state neurons,” Proc. Nat. Acad. Sci. U.S., vol. 81, pp. 3088–3092, May 1984
    • (1984) Proc. Nat. Acad. Sci. U.S. , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 38
    • 0023401686 scopus 로고
    • BSIM: Berkeley short-channel IGFET model for MOS transistors
    • Aug.
    • B. J. Sheu, D. L. Scharfetter, P. K. Ko, and M. -C. Jeng, “BSIM: Berkeley short-channel IGFET model for MOS transistors,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 458–466, Aug. 1987.
    • (1987) Jeng , vol.SC-22 , pp. 458-466
    • Sheu, B.J.1    Scharfetter, D.L.2    Ko, P.K.3    Jeng, M.-C.4
  • 39
    • 0023998115 scopus 로고
    • An MOS transistor charge model for VLSI design
    • Apr.
    • B. J. Sheu, W. -J. Hsu, and P. K. Ko, “An MOS transistor charge model for VLSI design,” IEEE Trans. Computer-Aided Design, vol. CAD-7, pp. 520–527, Apr. 1988.
    • (1988) IEEE Trans. Computer-Aided Design , vol.CAD-7 , pp. 520-527
    • Sheu, B.J.1    Hsu, W.J.2    Ko, P. K.3
  • 40
    • 0026382935 scopus 로고
    • An accurate MOS transistor model for submicron VLSI circuits’BSIM_plus
    • May
    • S. M. Gowda, B. J. Sheu, and J. S. Cable, “An accurate MOS transistor model for submicron VLSI circuits—BSIM_plus,” in Proc. IEEE Custom Integrated Circuits Conf, San Diego, CA, May 1991, pp. 23.2.1-4.
    • (1991) Proc. IEEE Custom Integrated Circuits Conf , pp. 23-24
    • Gowda, S.M.1    Sheu, B.J.2    Cable, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.