메뉴 건너뛰기




Volumn 6, Issue 3, 1993, Pages 268-283

Review of methods for analyzing constrained-layer damped structures

Author keywords

[No Author keywords available]

Indexed keywords

AEROSPACE APPLICATIONS; DAMPING; DYNAMIC RESPONSE; FINITE ELEMENT METHOD; MATHEMATICAL MODELS; PLATES (STRUCTURAL COMPONENTS); STRUCTURAL ANALYSIS;

EID: 0027627355     PISSN: 08931321     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)0893-1321(1993)6:3(268)     Document Type: Article
Times cited : (50)

References (19)
  • 1
    • 0014650863 scopus 로고
    • Transverse vibration of laminated plates with viscoelastic layer damping
    • Abdulhadi, F. (1969). “Transverse vibration of laminated plates with viscoelastic layer damping.”Shock and Vibration Bull., 40(5), 93–104.
    • (1969) Shock and Vibration Bull , vol.40 , Issue.5 , pp. 93-104
    • Abdulhadi, F.1
  • 2
    • 85024576684 scopus 로고
    • Theory of vibratory bending for elastic and viscoelastic layered finite-length beams
    • DiTaranto, R. A. (1965). “Theory of vibratory bending for elastic and viscoelastic layered finite-length beams.”ASME J. Appl. Mech., 32(2), 881–886.
    • (1965) ASME J. Appl. Mech , vol.32 , Issue.2 , pp. 881-886
    • Ditaranto, R.A.1
  • 3
    • 84930059882 scopus 로고
    • The free vibratory bending of damped laminated plates
    • American Society of Mechanical Engineers (ASME), New York, N.Y
    • DiTaranto, R. A., and McGraw, J. R. (1968). “The free vibratory bending of damped laminated plates.” Paper No. 69-VIBR-68. American Society of Mechanical Engineers (ASME), New York, N.Y.
    • (1968) Paper No. 69-VIBR-68.
    • Ditaranto, R.A.1    McGraw, J.R.2
  • 9
    • 33646096185 scopus 로고
    • Response of thick structures damped by viscoelastic material with application to layered beams and plates
    • Lalanne, M., Paulard, M., and Trompette, P. (1975). “Response of thick structures damped by viscoelastic material with application to layered beams and plates.”Shock and Vibration Bull., 46(2), 75–84.
    • (1975) Shock and Vibration Bull , vol.46 , Issue.2 , pp. 75-84
    • Lalanne, M.1    Paulard, M.2    Trompette, P.3
  • 10
    • 84930059883 scopus 로고
    • A numerical study of damping in viscoelastic sandwich beams
    • American Society of Mechanical Engineers (ASME), New York, N.Y
    • Leone, S. G., and Perlman, A. B. (1973). “A numerical study of damping in viscoelastic sandwich beams.” Pub. 73-DET-73, American Society of Mechanical Engineers (ASME), New York, N.Y.
    • (1973) Pub. 73-DET-73
    • Leone, S.G.1    Perlman, A.B.2
  • 11
    • 84930058254 scopus 로고
    • Evaluation of analytical methods to predict constrained-layer damping behavior
    • Blacksburg, Va
    • Liguore, S. L. (1988). “Evaluation of analytical methods to predict constrained-layer damping behavior,” MS thesis, Virginia Polytechnic Institute & State University, Blacksburg, Va.
    • (1988) MS Thesis, Virginia Polytechnic Institute & State University
    • Liguore, S.L.1
  • 12
    • 85003251637 scopus 로고
    • Governing equations for vibrating constrained layer damping sandwich plates and beams
    • Mead, D. J. (1973). “Governing equations for vibrating constrained layer damping sandwich plates and beams.”ASME J. Appl. Mech., 40(2), 639–640.
    • (1973) ASME J. Appl. Mech , vol.40 , Issue.2 , pp. 639-640
    • Mead, D.J.1
  • 13
    • 0018020083 scopus 로고
    • Frequency and loss factors of sandwich beams under various boundary conditions
    • Rao, D. K. (1978). “Frequency and loss factors of sandwich beams under various boundary conditions.”J. Mech. Engrg. Sci., 20(5), 271–282.
    • (1978) J. Mech. Engrg. Sci , vol.20 , Issue.5 , pp. 271-282
    • Rao, D.K.1
  • 14
    • 85103554891 scopus 로고
    • The effect of transverse shear deformation on the bending of elastic plates
    • Reissner, E. (1945). “The effect of transverse shear deformation on the bending of elastic plates.”ASME J. Appl. Mech., 12(2), 69–77.
    • (1945) ASME J. Appl. Mech , vol.12 , Issue.2 , pp. 69-77
    • Reissner, E.1
  • 15
    • 0003211861 scopus 로고
    • The modal strain energy finite element analysis method and its application to damped laminated beams
    • Rogers, L., Johnson, C., and Keinholz, D. (1980). “The modal strain energy finite element analysis method and its application to damped laminated beams.”Shock and Vibration Bull., 51(1), 56–62.
    • (1980) Shock and Vibration Bull , vol.51 , Issue.1 , pp. 56-62
    • Rogers, L.1    Johnson, C.2    Keinholz, D.3
  • 16
    • 0003081697 scopus 로고
    • Damping of flexural vibrations by means of viscoelastic laminae
    • American Society of Mechanical Engineers, New York, N.Y
    • Ross, D., Ungar, E. E., and Kerwin, Jr. E. M. (1959). “Damping of flexural vibrations by means of viscoelastic laminae.”ASME Section III Struct. Damping, American Society of Mechanical Engineers, New York, N.Y.
    • (1959) ASME Section III Struct. Damping
    • Ross, D.1    Ungar, E.E.2    Kerwin, E.M.3
  • 17
    • 0000658168 scopus 로고
    • Loss factors of viscoelastically damped beam structures
    • Ungar, E. E. (1961). “Loss factors of viscoelastically damped beam structures.”J. Acoustical Soc. of Am., 34(8), 1082–1089.
    • (1961) J. Acoustical Soc. of Am , vol.34 , Issue.8 , pp. 1082-1089
    • Ungar, E.E.1
  • 18
    • 0001463496 scopus 로고
    • Loss factors of viscoelastic systems in terms of energy concepts
    • Ungar, E. E., and Kerwin, Jr. E. M. (1962). “Loss factors of viscoelastic systems in terms of energy concepts.”J. Acoustical Soc. of Am., 36(1), 954–957.
    • (1962) J. Acoustical Soc. Ofam , vol.36 , Issue.1 , pp. 954-957
    • Ungar, E.E.1    Kerwin, E.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.