메뉴 건너뛰기




Volumn 39, Issue 3, 1993, Pages 930-945

Universal approximation bounds for superpositions of a sigmoidal function

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; FOURIER TRANSFORMS; FUNCTION EVALUATION; INFORMATION THEORY;

EID: 0027599793     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/18.256500     Document Type: Article
Times cited : (2280)

References (33)
  • 1
    • 0024861871 scopus 로고
    • Approximations by superpositions of a sigmoidal function
    • G. Cybenko Approximations by superpositions of a sigmoidal function Math. Contr. Signals, Syst. 2 303 314 1989
    • (1989) Math. Contr. Signals, Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 2
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • Κ. Hornik M. Stincheombe H. White Multi-layer feedforward networks are universal approximators Neural Networks 2 359 366 1989
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, Κ.1    Stincheombe, M.2    White, H.3
  • 3
    • 0003850757 scopus 로고
    • n-Widths in Approximation Theory
    • Springer-Verlag New York
    • A. Pinkus n-Widths in Approximation Theory 1985 Springer-Verlag New York
    • (1985)
    • Pinkus, A.1
  • 4
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • L. K. Jones A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training Ann. Statist. 20 608 613 Mar. 1992
    • (1992) Ann. Statist. , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 5
  • 6
    • 0004078680 scopus 로고
    • Number Theoretic Methods of Approximate Analysis
    • Fiznatgiz Moscow
    • N. M. Korobov Number Theoretic Methods of Approximate Analysis 1963 Fiznatgiz Moscow
    • (1963)
    • Korobov, N.M.1
  • 7
    • 0003466536 scopus 로고
    • Spline Models for Observational Data
    • SIAM PA, Philadelphia
    • G. Wahba Spline Models for Observational Data 1990 SIAM PA, Philadelphia
    • (1990)
    • Wahba, G.1
  • 8
    • 0024935434 scopus 로고
    • Statistical properties of artificial neural networks
    • FL
    • A. R. Barron Statistical properties of artificial neural networks Proc. IEEE Int. Conf. Decision Contr. 280 285 Proc. IEEE Int. Conf. Decision Contr. Tampa FL 1989-Dec.-13-15
    • (1989) , pp. 280-285
    • Barron, A.R.1
  • 9
    • 85143030482 scopus 로고
    • Nonparametric Functional Estimation
    • Complexity regularization with applications to artificial neural networks Kluwer Academic The Netherlands, Dordrecht
    • A. R. Barron Nonparametric Functional Estimation 561 576 1991 Kluwer Academic The Netherlands, Dordrecht Complexity regularization with applications to artificial neural networks
    • (1991) , pp. 561-576
    • Barron, A.R.1
  • 11
    • 0000270806 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • A. R. Barron Approximation and estimation bounds for artificial neural networks Proc. 4th Annu. Workshop Computation. Learning Theory 243 249 Proc. 4th Annu. Workshop Computation. Learning Theory 1991-Aug.
    • (1991) , pp. 243-249
    • Barron, A.R.1
  • 12
    • 0025635525 scopus 로고
    • Connectionists nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • H. White Connectionists nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings Neural Networks 3 5 535 550 1990
    • (1990) Neural Networks , vol.3 , Issue.5 , pp. 535-550
    • White, H.1
  • 13
    • 0003783408 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • Santa Cruz
    • D. Haussler Decision theoretic generalizations of the PAC model for neural net and other learning applications 1991 Santa Cruz UCSC-CRL-91-02 Univ. of California
    • (1991)
    • Haussler, D.1
  • 14
    • 0003073642 scopus 로고
    • Statistical learning networks: A unifying view
    • A. R. Barron R. L. Barron Statistical learning networks: A unifying view Computing Science and Statistics: Proc. 21st Symp. Interface 192 203 Computing Science and Statistics: Proc. 21st Symp. Interface 1988
    • (1988) , pp. 192-203
    • Barron, A.R.1    Barron, R.L.2
  • 15
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • L. Breiman Hinging hyperplanes for regression, classification, and function approximation IEEE Trans. Inform. Theory 39 999 1013 May 1993
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 999-1013
    • Breiman, L.1
  • 16
    • 84972519279 scopus 로고
    • Slide functions for projection pursuit regression and neural networks
    • R. Tibshirani Slide functions for projection pursuit regression and neural networks 1992 9205 Univ. Toronto
    • (1992)
    • Tibshirani, R.1
  • 17
    • 85143029396 scopus 로고
    • Y. Zhao On projection pursuit learning 1992
    • (1992)
    • Zhao, Y.1
  • 18
    • 0003891770 scopus 로고
    • Convergence rates of approximation by translates
    • F. Girosi G. Anzellotti Convergence rates of approximation by translates 1992 1288 Mass. Inst. Technol.
    • (1992)
    • Girosi, F.1    Anzellotti, G.2
  • 19
    • 84919246869 scopus 로고
    • Strong universal consistency of neural network classifiers
    • A Farago G. Lugosi Strong universal consistency of neural network classifiers 1992 Tech. Univ. Budapest
    • (1992)
    • Farago, A1    Lugosi, G.2
  • 20
    • 85143018409 scopus 로고
    • Neural net approximation
    • A. R. Barron Neural net approximation Proc. Yale Workshop Adaptive Learning Syst. Proc. Yale Workshop Adaptive Learning Syst. 1992-May
    • (1992)
    • Barron, A.R.1
  • 21
    • 85143033731 scopus 로고    scopus 로고
  • 22
    • 0037533442 scopus 로고
    • Convergence rates for single hidden layer feedforward networks
    • CA, Santa Monica
    • D. F. McCaffrey Convergence rates for single hidden layer feedforward networks 1992 CA, Santa Monica Dept. Statist., North Carolina State Univ.
    • (1992)
    • McCaffrey, D.F.1
  • 23
    • 0000358945 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • H. N. Mhaskar C. A. Micchelli Approximation by superposition of a sigmoidal function Advances in Appl. Math. 13 350 373 1992
    • (1992) Advances in Appl. Math. , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 24
    • 85143039422 scopus 로고
    • Good weights and hyperbolic kernels for neural networks, projection pursuit, and pattern classification: Fourier strategies for extracting information from high-dimensional data
    • Lowell
    • L. K. Jones Good weights and hyperbolic kernels for neural networks, projection pursuit, and pattern classification: Fourier strategies for extracting information from high-dimensional data 1991 Lowell Dept. Math. Sci., Univ. of Massachusetts
    • (1991)
    • Jones, L.K.1
  • 25
    • 0003345901 scopus 로고    scopus 로고
    • Remarques sur un resultat non publie de Β. Maurey
    • G. Pisier Remarques sur un resultat non publie de Β. Maurey Seminaire d' analyse fonctionelle 1980-1981 Seminaire d' analyse fonctionelle 1980-1981 Palaiseau
    • Pisier, G.1
  • 26
    • 0025503458 scopus 로고
    • Constructive approximations for neural networks by sigmoidal functions
    • L. K. Jones Constructive approximations for neural networks by sigmoidal functions Proc. IEEE: Special Issue on Neural Networks 78 1586 1589 Proc. IEEE: Special Issue on Neural Networks 1991
    • (1991) , vol.78 , pp. 1586-1589
    • Jones, L.K.1
  • 27
    • 85006528164 scopus 로고
    • Learning decision trees using the Fourier spectrum
    • E. Kushilevitz Y. Mansour Learning decision trees using the Fourier spectrum Proc. 23rd ACM Symp Theory Comput. 455 464 Proc. 23rd ACM Symp Theory Comput. 1991
    • (1991) , pp. 455-464
    • Kushilevitz, E.1    Mansour, Y.2
  • 28
    • 0348084926 scopus 로고
    • The spectral norm of finite functions
    • M. Bellare The spectral norm of finite functions 1991 TR-465
    • (1991)
    • Bellare, M.1
  • 29
    • 0004116414 scopus 로고
    • Realand Complex Analysis
    • McGraw-Hill New York
    • W. Rudin Realand Complex Analysis 1984 McGraw-Hill New York
    • (1984)
    • Rudin, W.1
  • 30
    • 0003517185 scopus 로고
    • Introduction to Fourier Analysis on Euclidean Spaces
    • Princeton Univ. Press NJ, Princeton
    • E. M. Stein G. Weiss Introduction to Fourier Analysis on Euclidean Spaces 1971 Princeton Univ. Press NJ, Princeton
    • (1971)
    • Stein, E.M.1    Weiss, G.2
  • 31
    • 85143031814 scopus 로고    scopus 로고
    • Rate of approximation results motivated b robust neural network learning
    • C. Darken M. Donahue L. Gurvits E. Sontag Rate of approximation results motivated b robust neural network learning Proc. Sixth ACM Wrokshop on Computat. Learning Theory Proc. Sixth ACM Wrokshop on Computat. Learning Theory
    • Darken, C.1    Donahue, M.2    Gurvits, L.3    Sontag, E.4
  • 32
    • 85143017040 scopus 로고
    • Sup norm approximation bounds for networks via Vapnik-Chervonenkis classes
    • Dept. of Math., Lehigh Univ. PA, Bethlehem
    • J. Yukich Sup norm approximation bounds for networks via Vapnik-Chervonenkis classes Jan. 1993 Dept. of Math., Lehigh Univ. PA, Bethlehem
    • (1993)
    • Yukich, J.1
  • 33
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • V. Kůrková Kolmogorov's theorem and multilayer neural networks Neural Net. 5 501 506 1992
    • (1992) Neural Net. , vol.5 , pp. 501-506
    • Kůrková, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.