-
1
-
-
0016930095
-
Binary codes with improved minimum weights
-
Mar. {Al}
-
W. O. Alltop, “Binary codes with improved minimum weights,” IEEE Trans. inform. Theory, vol. IT-22, pp. 241–243, Mar. 1976. {Al}
-
(1976)
IEEE Trans. inform. Theory
, vol.IT-22
, pp. 241-243
-
-
Alltop, W.O.1
-
2
-
-
0021517725
-
A method for extending binary linear codes
-
Nov. {A12}
-
W. O. Alltop “A method for extending binary linear codes,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 871–872, Nov. 1984. {Al2}
-
(1984)
IEEE Trans. Inform. Theory
, vol.IT-30
, pp. 871-872
-
-
Alltop, W.O.1
-
3
-
-
0015567985
-
A note on the Griesmer bound
-
Jan. {BM}
-
L. D. Baumert and R. J. McEliece, “A note on the Griesmer bound,” IEEE Trans. Inform. Theory, vol. IT-19, 134–135, Jan. 1973, {BM}
-
(1973)
IEEE Trans. Inform. Theory
, vol.IT-19
, pp. 134-135
-
-
Baumert, L.D.1
McEliece, R.J.2
-
5
-
-
84939322474
-
New binary codes
-
July {G G}
-
D. Berntzen, B. Groneick, S. Grosse, P. Kemper, W. Scharlau, D. Schomaker and M. Wirtz, “New binary codes,” preliminary rep. July 1992. {G G}
-
(1992)
preliminary rep
-
-
Berntzen, D.1
Groneick, B.2
Grosse, S.3
Kemper, P.4
Scharlau, W.5
Schomaker, D.6
Wirtz, M.7
-
6
-
-
84939387206
-
The linear programming bound for binary linear codes
-
submitted, Mar. {AEB}
-
A. E. Brouwer, “The linear programming bound for binary linear codes,” IEEE Trans. Inform. Theory, submitted, Mar. 1992 {AEB}
-
(1992)
IEEE Trans. Inform. Theory
-
-
Brouwer, A.E.1
-
7
-
-
0026219879
-
A [55, 16, 19 J binary Goppa code and related codes having large minimum distance
-
Sept. {Cal}
-
H. T. Cao, R. L. Dougherty, and H. Janwa, “A [55, 16, 19J binary Goppa code and related codes having large minimum distance,” IEEE Trans. Inform. Theory, vol. 37, 1432, Sept. 1991. {Cal}
-
(1991)
IEEE Trans. Inform. Theory
, vol.37
, Issue.1432
-
-
Cao, H.T.1
Dougherty, R.L.2
Janwa, H.3
-
8
-
-
0014782018
-
Computer results on the minimum distance of some binary cyclic codes
-
May {N}
-
C. L. Chen, “Computer results on the minimum distance of some binary cyclic codes,” IEEE Trans. Inform. Theory, vol. IT-16, pp. 359–360, May 1970. {N}
-
(1970)
IEEE Trans. Inform. Theory
, vol.IT-16
, pp. 359-360
-
-
Chen, C.L.1
-
9
-
-
0023418320
-
New linear codes constructed by concatenating, extending, and shortening methods
-
Sept. {Ch}
-
Y. Cheng, “New linear codes constructed by concatenating, extending, and shortening methods,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 719–721, Sept. 1987. {Ch}
-
(1987)
IEEE Trans. Inform. Theory
, vol.IT-33
, pp. 719-721
-
-
Cheng, Y.1
-
11
-
-
38249018000
-
A [45, 131 code with minimal distance 16
-
{CLS}
-
J. H. Conway, S. J. Lomonaco Jr., and N. J. A. Sloane, “A [45, 131 code with minimal distance 16,” Discrete Math., vol. 83, pp. 213–217, 1990. {CLS}
-
(1990)
Discrete Math.
, vol.83
, pp. 213-217
-
-
Conway, J.H.1
Lomonaco, S.J.2
Sloane, N.J.A.3
-
12
-
-
0026955573
-
New minimum distance bounds for certain binary linear codes
-
Nov. {DK}
-
R. N. Daskalov and S. N. Kapralov, “New minimum distance bounds for certain binary linear codes,” IEEE Trans. Inform. Theory, vol. 38, p p. 1795–1796, Nov. 1992. {DK}
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 1795-1796
-
-
Daskalov, R.N.1
Kapralov, S.N.2
-
13
-
-
84939337308
-
There is no binary linear [66, 13, 2 8] code
-
preprint May {Das}
-
R. N. Daskalov, “There is no binary linear [66, 13, 2 8] code,” preprint, May 1992. {Das}
-
(1992)
-
-
Daskalov, R.N.1
-
14
-
-
0346180118
-
New bounds on the minimum length of binary linear block codes
-
Linkoping Univ., Sweden Nov. {DEl}
-
S. M. Dodunekov, S. B. Encheva, and A. I. Ivanov, “New bounds on the minimum length of binary linear block codes,” Rep. LiTH-ISY-I-1283, Linkoping Univ., Sweden, Nov. 1991. {DEl}
-
(1991)
Rep. LiTH-ISY-I-1283
-
-
Dodunekov, S.M.1
Encheva, S.B.2
Ivanov, A.I.3
-
15
-
-
0023669905
-
New bounds on binary linear codes of dimension eight
-
Nov. {DI-I}
-
S. M. Dodunekov, T. Helleseth, N. Manev, and O. Ytrehus, “New bounds on binary linear codes of dimension eight,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 917–919, Nov. 1987. {DI-I}
-
(1987)
IEEE Trans. Inform. Theory
, vol.IT-33
, pp. 917-919
-
-
Dodunekov, S.M.1
Helleseth, T.2
Manev, N.3
Ytrehus, O.4
-
16
-
-
0022146578
-
An improvement of the Griesmer bound for some small minimum distances
-
Oct. {DM}
-
S. M. Dodunekov and N. L. Manev, “An improvement of the Griesmer bound for some small minimum distances,” Discrete Appl. Math., vol. 12, pp. 103–114, Oct. 1985. {DM}
-
(1985)
Discrete Appl. Math
, vol.12
, pp. 103-114
-
-
Dodunekov, S.M.1
Manev, N.L.2
-
17
-
-
85032069763
-
Covering radius computations for binary cyclic codes
-
July {DJ}
-
R. Dougherty and H. Janwa, “Covering radius computations for binary cyclic codes,” Math. Comput., vol. 57, pp. 415–434, July 1991. {DJ}
-
(1991)
Math. Comput.
, vol.57
, pp. 415-434
-
-
Dougherty, R.1
Janwa, H.2
-
20
-
-
0000210106
-
A bound for error-correcting codes
-
{E, Gr}
-
J. H. Griesmer, “A bound for error-correcting codes,” IBM J. Res. Develop., vol. 4, pp. 532–542, 1960. {E, Gr}
-
(1960)
IBM J. Res. Develop.
, vol.4
, pp. 532-542
-
-
Griesmer, J.H.1
-
21
-
-
84939329474
-
Optimal linear codes over GF(4)
-
to appear. {Q}
-
P. P. Greenough and R. Hill, “Optimal linear codes over GF(4),”. Discrete Math., to appear. {Q}
-
Discrete Math.
-
-
Greenough, P.P.1
Hill, R.2
-
22
-
-
0001056142
-
Nine good rate (Iv - 1)/pro qua-sicyclic sicyclic codes
-
{GB2}
-
A. Gulliver and V. K. Bhargava, “Nine good rate (Iv - 1)/pro qua-sicyclic sicyclic codes,” IEEE Trans. Inform. Theory, vol. 38, pp. 1366–1369, 1992. {GB2}
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 1366-1369
-
-
Gulliver, A.1
Bhargava, V.K.2
-
23
-
-
0026157988
-
Some best rate lip and rate (p — 1)/p systematic quasi-cyclic codes
-
{GuB}
-
T. A. Gulliver and V. K. Bhargava, “Some best rate lip and r at e (p — 1)/p systematic quasi-cyclic codes,” IEEE Trans. Inform. Theory, vol. 37, 552–555, 1991. {GuB}
-
(1991)
IEEE Trans. Inform. Theory
, vol.37
, pp. 552-555
-
-
Gulliver, T.A.1
Bhargava, V.K.2
-
24
-
-
0346381516
-
Computerized search for linear binary codes
-
July {HP}
-
A. A. Hashim and V. S. Pozdniakov, “Computerized search for linear binary codes,” Electron Lett., vol. 12, pp. 350–351, July 1976. {HP}
-
(1976)
Electron Lett.
, vol.12
, pp. 350-351
-
-
Hashim, A.A.1
Pozdniakov, V.S.2
-
25
-
-
0043043783
-
Minimum-distance bounds for binary linear codes
-
May {A, 8}
-
H. J. Helgert and R. D. Stinaff, “Minimum-distance bounds for binary linear codes,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 344–356, May 1973. {A, 8}
-
(1973)
IEEE Trans. Inform. Theory
, vol.IT-19
, pp. 344-356
-
-
Helgert, H.J.1
Stinaff, R.D.2
-
27
-
-
0016326733
-
Alternant codes
-
Dec. {lig}
-
H. J. Helgert, “Alternant codes,” Inform. Contr., vol. 26, pp. 369–380, Dec. 1974. {lig}
-
(1974)
Inform. Contr.
, vol.26
, pp. 369-380
-
-
Helgert, H.J.1
-
28
-
-
84939394626
-
How to find a [33, 8, 14]—code
-
Dept. of Informatics, Univ. of Bergen, Norway, Nov. {1-1Y2}
-
T. Helleseth and O. Ytrehus, “How to find a [33, 8, 14]—code,” in Informatics, (preliminary version), Dept. of Informatics, Univ. of Bergen, Norway, Nov. 1989. {1-1Y2}
-
(1989)
Informatics, (preliminary version)
-
-
Helleseth, T.1
Ytrehus, O.2
-
29
-
-
0025464938
-
The nonexistence of certain binary linear codes
-
July {HT}
-
R. Hill and K. L. Traynor, “The nonexistence of certain binary linear codes,” IEEE Trans. Inform. Theory, vol. 36, pp. 917–922, July 1990. {HT}
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 917-922
-
-
Hill, R.1
Traynor, K.L.2
-
30
-
-
0022148145
-
The concatenated structure of cyclic and Abelian codes
-
Nov. {Je}
-
J. M. Jensen, “The concatenated structure of cyclic and Abelian codes,” IEEE Trnas. Inform. Theory, vol. IT-31, pp. 788–793, Nov. 1985. {Je}
-
(1985)
IEEE Trnas. Inform. Theory
, vol.IT-31
, pp. 788-793
-
-
Jensen, J.M.1
-
31
-
-
0001336166
-
A new upper bound for error-correcting codes
-
Apr. {Jol}
-
S. M. Johnson, “A new upper bound for error-correcting codes,” IRE Trans. Inform. Theory, vol. IT-8, pp. 203–207, Apr. 1962. {Jol}
-
(1962)
IRE Trans. Inform. Theory
, vol.IT-8
, pp. 203-207
-
-
Johnson, S.M.1
-
32
-
-
0015099149
-
On upper bounds for unrestricted binary error-correcting codes
-
July {Jo2}
-
S. M. Johnson, “On upper bounds for unrestricted binary error-correcting codes,” IEEE Trans. Inform. Theory, vol. IT47, pp. 466–478, July 1971. {Jo2}
-
(1971)
IEEE Trans. Inform. Theory
, vol.IT47
, pp. 466-478
-
-
Johnson, S.M.1
-
33
-
-
84910486314
-
New binary coding results by circulants
-
Jan. {L}
-
M. Karlin, “New binary coding results by circulants,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 81–92, Jan. 1969. {L}
-
(1969)
IEEE Trans. Inform. Theory
, vol.IT-15
, pp. 81-92
-
-
Karlin, M.1
-
34
-
-
0016548869
-
A new class of binary codes constructed on the basis of BCH codes
-
Sept. {Ka}
-
M. Kasahara, Y. Sugiyama, S. Hirasawa, and T. Namekawa, “A new class of binary codes constructed on the basis of BCH codes,” IEEE Trans. Inform. Theory, vol. IT-21, pp. 582–585, Sept. 1975. {Ka}
-
(1975)
IEEE Trans. Inform. Theory
, vol.IT-21
, pp. 582-585
-
-
Kasahara, M.1
Sugiyama, Y.2
Hirasawa, S.3
Namekawa, T.4
-
35
-
-
0001267508
-
Polynomial codes
-
Nov. {V}
-
T. Kasami, S. Lin, and W. W. Peterson, “Polynomial codes,” IEEE Trans. Inform. Theory, vol. IT-14, pp. 807–814, Nov. 1968. {V}
-
(1968)
IEEE Trans. Inform. Theory
, vol.IT-14
, pp. 807-814
-
-
Kasami, T.1
Lin, S.2
Peterson, W.W.3
-
36
-
-
0000830306
-
Some remarks on BCH bounds and minimum weights of binary primitive BCH codes
-
May {BCH}
-
T. Kasami and N. Tokura, “Some remarks on BCH bounds and minimum weights of binary primitive BCH codes,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 408–413, May 1969. {BCH}
-
(1969)
IEEE Trans. Inform. Theory
, vol.IT-15
, pp. 408-413
-
-
Kasami, T.1
Tokura, N.2
-
37
-
-
0026836634
-
Some ternary and quaternary codes and associated sphere packings
-
Mar. {Q, TO3}
-
F. R. Kschischang and S. Pasupathy, “Some ternary and quaternary codes and associated sphere packings,” IEEE Trans. Inform. Theory, vol. 38, 227–246, Mar. 1992. {Q, TO3}
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 227-246
-
-
Kschischang, F.R.1
Pasupathy, S.2
-
38
-
-
1842805548
-
A [55, 16, 19] binary Goppa code
-
Sept. {LC}
-
M. Loeloeian and J. Conan, “A [55, 16, 19] binary Goppa code,” IEEE Trans, Inform. Theory, vol. IT-30, p. 773, Sept. 1984. {LC}
-
(1984)
IEEE Trans, Inform. Theory
, vol.IT-30
, pp. 773
-
-
Loeloeian, M.1
Conan, J.2
-
39
-
-
0043144238
-
An improvement of the Griesmer bound in the case of small code distances
-
All-Union Summer Sem., Khakusy, Lake Baikal, (Russian), 182 Sibirsk. Erierget. Inst., Sibirsk. Otdel. Akad. Nauk SSSR, Irkutsk,{Lv}
-
V. N. Logacev, “An improvement of the Griesmer bound in the case of small code distances,” in Optimization Methods and Their Applications, All-Union Summer Sem., Khakusy, Lake Baikal, 1972 (Russian), 182 Sibirsk. Erierget. Inst., Sibirsk. Otdel. Akad. Nauk SSSR, Irkutsk, pp. 107–111, 1974. {Lv}
-
(1974)
Optimization Methods and Their Applications
, pp. 107-111
-
-
Logacev, V.N.1
-
40
-
-
0003525990
-
-
Amsterdam: North-Holland{A, B, C, D, E, G, p1, p 2, p 3, p 4, Y1}
-
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam: North-Holland, 1977. {A, B, C, D, E, G, P1, P2, P3, P4, Y1}
-
(1977)
The Theory of Error-Correcting Codes
-
-
MacWilliams, F.J.1
Sloane, N.J.A.2
-
42
-
-
0016385201
-
Good block codes derived from cyclic codes
-
{Pi}
-
P. Piret, “Good block codes derived from cyclic codes,” Electron. Lett., vol. 10, 391–392, 1974. {Pi}
-
(1974)
Electron. Lett.
, vol.10
, pp. 391-392
-
-
Piret, P.1
-
43
-
-
0346381514
-
Good linear codes of lengths 27 and 28
-
Mar. {F312}
-
P. Piret, “Good linear codes of lengths 27 and 28,” IEEE Trans. Inform. Theory, vol. 1T-26, p. 227, Mar. 1980. {F312}
-
(1980)
IEEE Trans. Inform. Theory
, vol.1T-26
, pp. 227
-
-
Piret, P.1
-
44
-
-
0017996248
-
The minimum distance of all binary cyclic codes of odd lengths from 69 to 99
-
July {PT}
-
G. Promhouse and S. Tavares, “The minimum distance of all binary cyclic codes of odd lengths from 69 to 99,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 438–442, July 1978. {PT}
-
(1978)
IEEE Trans. Inform. Theory
, vol.IT-24
, pp. 438-442
-
-
Promhouse, G.1
Tavares, S.2
-
45
-
-
0004285932
-
On bounds on codes
-
Eindhoven Univ. of Technol., Eindhoven, The Netherlands, Aug.{Pu}
-
C. L. M. van Pul, “On bounds on codes,” Master’s thesis, Dept. of Math. and Comput. Sci., Eindhoven Univ. of Technol., Eindhoven, The Netherlands, Aug. 1982. {Pu}
-
(1982)
Master’s thesis, Dept. of Math. and Comput. Sci.
-
-
van Pul, C.L.M.1
-
47
-
-
0015662368
-
A (48, 31, 8) linear code
-
Sept. {RR}
-
V. V. Rao and S. M. Reddy, “A (48, 31, 8) linear code,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 709–711, Sept. 1973. {RR}
-
(1973)
IEEE Trans. Inform. Theory
, vol.IT-19
, pp. 709-711
-
-
Rao, V.V.1
Reddy, S.M.2
-
48
-
-
84939387573
-
On Goppa and generalized Srivastava codes
-
Eindhoven Univ. of Technol. Eindhoven, The Netherlands Aug. {Ro}
-
G. Roelofsen, “On Goppa and generalized Srivastava codes,” Master’s thesis, Dept. of Math. and Comp. Sci., Eindhoven Univ. of Technol., Eindhoven, The Netherlands, Aug. 1982. {Ro}
-
(1982)
Master’s thesis, Dept. of Math. and Comp. Sci.
-
-
Roelofsen, G.1
-
49
-
-
0026839680
-
On binary cyclic codes of length from 101 to 127
-
Mar. {SW}
-
D. Schomaker and M. Wirtz, “On binary cyclic codes of length from 101 to 127,” IEEE Trans. Inform. Theory, vol. 38, pp. 516–518, Mar. 1992. {SW}
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 516-518
-
-
Schomaker, D.1
Wirtz, M.2
-
51
-
-
0023168703
-
Binary even [25, 15, 6] codes do not exist
-
Jan. {Si}
-
J. Simonis, “Binary even [25, 15, 6] codes do not exist,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 151–153, Jan. 1987. {Si}
-
(1987)
IEEE Trans. Inform. Theory
, vol.IT-33
, pp. 151-153
-
-
Simonis, J.1
-
52
-
-
0014872746
-
New family of single-error correcting codes
-
Nov. {D}
-
N. J. A. Sloane, D. S. Whitehead, “New family of single-error correcting codes,” IEEE Trans. Inform. Theory, vol. IT-16, pp. 717–719, Nov. 1970. {D}
-
(1970)
IEEE Trans. Inform. Theory
, vol.IT-16
, pp. 717-719
-
-
Sloane, N.J.A.1
Whitehead, D.S.2
-
53
-
-
84939047165
-
New binary codes
-
July {SRC, Y1}
-
N. J. A. Sloane, S. M. Reddy, and C. L. Chen, “New binary codes,” IEEE Trans. Inform. Theory, vol. IT-18, 503–510, July 1972. {SRC, Y1}
-
(1972)
IEEE Trans. Inform. Theory
, vol.IT-18
, pp. 503-510
-
-
Sloane, N.J.A.1
Reddy, S.M.2
Chen, C.L.3
-
54
-
-
0000163235
-
Algebraically punctured cyclic codes
-
Apr. {SS}
-
G. Solomon and J. J. Slither, “Algebraically punctured cyclic codes,” Inform. Contr., vol. 8, pp. 170–179, Apr. 1965. {SS}.
-
(1965)
Inform. Contr.
, vol.8
, pp. 170-179
-
-
Solomon, G.1
Slither, J.J.2
-
55
-
-
0016996242
-
Further results on Goppa codes and their applications to constructing efficient binary codes
-
Sept. {Su}
-
Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “Further results on Goppa codes and their applications to constructing efficient binary codes,” IEEE Trans. Inform. Theory, vol. IT-22, pp. 518–526, Sept. 1976. {Su}
-
(1976)
IEEE Trans. Inform. Theory
, vol.IT-22
, pp. 518-526
-
-
Sugiyama, Y.1
Kasahara, M.2
Hirasawa, S.3
Namekawa, T.4
-
56
-
-
0018018391
-
On quasi-cyclic codes with rate 1 nt
-
Sept. {vT1}
-
H. C. A. van Tilborg, “On quasi-cyclic codes with rate 1 nt,” IEEE Trans. Inform. Theory, vol. IT-24, 628–630, Sept. 1978. {vT1}
-
(1978)
IEEE Trans. Inform. Theory
, vol.IT-24
, pp. 628-630
-
-
van Tilborg, H.C.A.1
-
57
-
-
0043144240
-
On the uniqueness resp. nonexistence of certain codes meeting the Griesmer bound
-
Jan. {vT2}
-
H. C. A. van Tilborg, “On the uniqueness resp. nonexistence of certain codes meeting the Griesmer bound,” Inform. Contr., vol. 44, pp. 16–35, Jan. 1980. {vT2}
-
(1980)
Inform. Contr.
, vol.44
, pp. 16-35
-
-
van Tilborg, H.C.A.1
-
58
-
-
0041641397
-
The smallest length of binary 7-dimensional linear codes with prescribed minimum distance
-
{vT3}
-
H. C. A. van Tilborg, “The smallest length of binary 7-dimensional linear codes with prescribed minimum distance,” Discrete Math., vol. 33, pp. 197–207, 1981. {vT3}
-
(1981)
Discrete Math.
, vol.33
, pp. 197-207
-
-
van Tilborg, H.C.A.1
-
59
-
-
84939338917
-
A proof of the nonexistence of a binary (55, 7, 26) code
-
Eindhoven Nov. {vT4}
-
H. C. A. van Tilborg, “A proof of the nonexistence of a binary (55, 7, 26) code,” Th-Report Report 79—WSK-09, Tech. Hogeschool Eindhoven, Nov. 1979. {vT4}
-
(1979)
Th-Report Report 79—WSK-09, Tech. Hogeschool
-
-
van Tilborg, H.C.A.1
-
60
-
-
84879468962
-
On the optimal use and the construction of linear block codes
-
Eindhoven Univ. of Technol., Eindhoven, The Netherlands Nov. {TO}
-
L. M. G. M. Tolhuizen, “On the optimal use and the construction of linear block codes,” Master’s thesis, Dept. of Math. and Comput. Sci., Eindhoven Univ. of Technol., Eindhoven, The Netherlands, Nov. 1986. {TO}
-
(1986)
Master’s thesis, Dept of Math. Comput. Sci.
-
-
Tolhuizen, L.M.G.M.1
-
61
-
-
0023415771
-
New binary linear block codes
-
Sept.{Tol}
-
L. M. G. M. Tolhuizen, “New binary linear block codes,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 727–729, Sept. 1987. {Tol}
-
(1987)
IEEE Trans. Inform. Theory
, vol.IT-33
, pp. 727-729
-
-
Tolhuizen, L.M.G.M.1
-
62
-
-
84938007770
-
Two new binary codes obtained by shortening a generalized concatenated code
-
Nov. {T-02}
-
L. M. G. M. Tolhuizen, “Two new binary codes obtained by shortening a generalized concatenated code,” IEEE Trans. Inform. Theory, vol. 37, p. 1705, Nov. 1991. {T-02}
-
(1991)
IEEE Trans. Inform. Theory
, vol.37
, pp. 1705
-
-
Tolhuizen, L.M.G.M.1
-
63
-
-
84939343608
-
A [96 22, 32] code constructed using a 4-ary [24, 5, 16] code found by Hill and Lizak
-
Sept.
-
L. M. G. M. Tolhuizen, “A [96 22, 32] code constructed using a 4-ary [24, 5, 16] code found by Hill and Lizak”, private communication, Sept. 1992.
-
(1992)
private communication
-
-
Tolhuizen, L.M.G.M.1
-
64
-
-
0023415923
-
An updated table of minimum-distance bounds for binary linear codes
-
Sept.
-
T. Verhoeff, “An updated table of minimum-distance bounds for binary linear codes,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 665–680. Sept. 1987.
-
(1987)
IEEE Trans. Inform. Theory
, vol.IT-33
, pp. 665-680
-
-
Verhoeff, T.1
-
65
-
-
0043144225
-
A remark concerning the minimum distance of binary group codes
-
July {VVa}
-
T. J. Wagner. “A remark concerning the minimum distance of binary group codes,” IEEE Trans. Inform. Theory, vol. IT-11, p. 458, July 1965. {VVa}
-
(1965)
IEEE Trans. Inform. Theory
, vol.IT-11
, pp. 458
-
-
Wagner, T.J.1
-
66
-
-
0017533103
-
Concatenated codes with large minimum distance
-
Sept. {We}
-
L. Weng, “Concatenated codes with large minimum distance,” IEEE Trans. Inform. Theory, vol. IT-23, pp. 613–615. Sept. 1977. {We}
-
(1977)
IEEE Trans. Inform. Theory
, vol.IT-23
, pp. 613-615
-
-
Weng, L.1
-
69
-
-
0020845563
-
New binary codes constructed by an old technique, -
-
Nov. {Wi}
-
J. A. Wiseman “New binary codes constructed by an old technique,” IEEE IEEE Trans. Inform. Theory, vol. IT-29, pp. 936–937, Nov. 1983. {Wi}
-
(1983)
IEEE IEEE Trans. Inform. Theory
, vol.IT-29
, pp. 936-937
-
-
Wiseman, J.A.1
-
70
-
-
44049118141
-
New binary codes from a generalization of Zinoviev’s technique
-
{VVi2}
-
J. A. Wiseman, “New binary codes from a generalization of Zinoviev’s technique,” Inform. Comput., vol. 98, pp. 132–139, 1992. {VVi2}
-
(1992)
Inform. Comput.
, vol.98
, pp. 132-139
-
-
Wiseman, J.A.1
-
71
-
-
0025434032
-
There is no binary [25, 8, 10 J code
-
May {Y1-11}
-
O. Ytrehus and T. Helleseth, “There is no binary [25, 8, 10J code,” IEEE Trans. Inform. Theory, vol. 36, pp. 695–696, May 1990. {Y1-11}
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 695-696
-
-
Ytrehus, O.1
Helleseth, T.2
-
72
-
-
0042385445
-
Generalized cascade codes
-
English translation: Jan. —Mar. {Zv}
-
V. A. Zinoviev, “Generalized cascade codes,” Probl. Peredach. Inform., vol. 12, no. I, pp. 5–15 (English translation: pp. 2–9), Jan.—Mar. 1976. {Zv}
-
(1976)
Probl. Peredach. Inform
, vol.12
, Issue.1
, pp. 5-15
-
-
Zinoviev, V.A.1
-
73
-
-
84913419835
-
Methods of code lengthening
-
English translation: Oct.—Dec. IZLI
-
V. A. Zinoviev and S. N. Litsyn, “Methods of code lengthening, ”Probl. Probl. Peredach. Inform., vol. 18, no. 4, pp. 29–42 (English translation: pp. 244–254), Oct.—Dec. 1982. IZLI
-
(1982)
Probl. Probl. Peredach. Inform.
, vol.18
, Issue.4
, pp. 29-42
-
-
Zinoviev, V.A.1
Litsyn, S.N.2
-
74
-
-
84939318958
-
Three best binary block codes of minimum distance fifteen
-
preprint. {FB}
-
P. Fark8 and K. Briihl, “Three best binary block codes of minimum distance fifteen,” preprint, 1993. {FB}
-
(1993)
-
-
Fark8, P.1
Briihl, K.2
|