-
1
-
-
0002546079
-
Attribute-oriented induction in relational databases
-
G.Piatetsky-Shapiro and W. J. Frawley, Eds. Menlo Park, CA: AAAI/MIT
-
Y. Cai, N. Cercone, and J. Han, “Attribute-oriented induction in relational databases,” in G. Piatetsky-Shapiro and W. J. Frawley, Eds. Knowledge Discovery in Databases. Menlo Park, CA: AAAI/MIT, 1990, pp. 213–228.
-
(1990)
Knowledge Discovery in Databases
, pp. 213-228
-
-
Cai, Y.1
Cercone, N.2
Han, J.3
-
2
-
-
0025600168
-
An attribute-oriented approach for learning classification rules from relational databases
-
Los Angeles, CA, Feb.
-
Y. Cai, N. Cercone, and J. Han, “An attribute-oriented approach for learning classification rules from relational databases,” in Proc. 6th Int. Conf. Data Engineering, Los Angeles, CA, Feb. 1990, 281–288.
-
(1990)
Proc. 6th Int. Conf. Data Engineering
, pp. 281-288
-
-
Cai, Y.1
Cercone, N.2
Han, J.3
-
3
-
-
0013201657
-
Foundations of semantic query optimization for deductive databases
-
in J. Minker, Ed, San Francisco. CA: Morgan Kaufmann
-
U. S. Chakravarthy, J. Grant, and J. Minker, “Foundations of semantic query optimization for deductive databases,” in J. Minker, Ed. Foundations of Deductive Databases and Logic Programming, San Francisco. CA: Morgan Kaufmann, 1988, pp. 243–274.
-
(1988)
Foundations of Deductive Databases and Logic Programming
, pp. 243-274
-
-
Chakravarthy, U.S.1
Grant, J.2
Minker, J.3
-
4
-
-
0000417939
-
A statistical technique for extracting classificatory knowledge from databases
-
Menlo Park, CA: AAAI/MIT
-
K. C. C. Chan and A. K. C. Wong, “A statistical technique for extracting classificatory knowledge from databases,” in G. Piatetsky-Shapiro and W. J. Frawley, eds., Knowledge Discovery in Databases. Menlo Park, CA: AAAI/MIT, 1991, pp. 107–124.
-
(1991)
G. Piatetsky-Shapiro and W. J. Frawley, eds., Knowledge Discovery in Databases
, pp. 107-124
-
-
Chan, K.C.C.1
Wong, A.K.C.2
-
5
-
-
0003971841
-
The Handbook of Artificial Intelligence (Vol. III)
-
San Francisco, CA: William Kaufmann
-
P. Cohen and E. A. Feigenbaum, The Handbook of Artificial Intelligence (Vol. III). San Francisco, CA: William Kaufmann, 1983.
-
-
-
Cohen, P.1
Feigenbaum, E.A.2
-
6
-
-
0002032320
-
A comparative review of selected methods for learning from examples
-
R. S. Michalski., Eds. San Francisco, CA: Morgan Kaufmann
-
T. G. Dietterich and R. S. Michalski, “A comparative review of selected methods for learning from examples,” in R. S. Michalski et al., Eds., Machine Learning: An Artificial Intelligence Approach, Vol. 1. San Francisco, CA: Morgan Kaufmann, 1983, pp. 41–82.
-
(1983)
Machine Learning: An Artificial Intelligence Approach
, vol.1
, pp. 41-82
-
-
Dietterich, T.G.1
Michalski, R.S.2
-
7
-
-
0003218928
-
Improving inference through conceptual clustering
-
Seattle, WA, July
-
D. Fisher, “Improving inference through conceptual clustering,” in Proc. 1987 AAAI Conf, Seattle, WA, July 1987, pp. 461-465.
-
(1987)
Proc. 1987 AAAI Conf.
, pp. 461-465
-
-
Fisher, D.1
-
8
-
-
0021444827
-
Logic and databases: A deductive approach
-
H. Gallaire, J. Minker, and J. Nicolas, “Logic and databases: A deductive approach,” ACM Comput. Survey, vol. 16, no. 2, pp. 153–185, 1984.
-
(1984)
ACM Comput. Survey
, vol.16
, Issue.2
, pp. 153-185
-
-
Gallaire, H.1
Minker, J.2
Nicolas, J.3
-
9
-
-
0003497307
-
Logical Foundations of Artificial Intelligence
-
San Francisco, CA: Morgan Kaufmann
-
M. Genesereth and N. Nilsson, Logical Foundations of Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 1987.
-
(1987)
-
-
Genesereth, M.1
Nilsson, N.2
-
10
-
-
84990580502
-
Quantifying the inductive bias in concept learning
-
Philadelphia, PA, Aug.
-
D. Haussler, “Quantifying the inductive bias in concept learning,” in Proc. 1986 AAAI Conf., Philadelphia, PA, Aug. 1986, pp. 485–489.
-
(1986)
Proc. 1986 AAAI Conf.
, pp. 485-489
-
-
Haussler, D.1
-
11
-
-
0001629292
-
The process of scientific discovery: The strategy of experimentation
-
D. Kulkarni and H. A. Simon, “The process of scientific discovery: The strategy of experimentation,” Cognitive Sci., vol. 12, pp. 139-175, 1988.
-
(1988)
Cognitive Sci.
, vol.12
, pp. 139-175
-
-
Kulkarni, D.1
Simon, H.A.2
-
12
-
-
85013572365
-
Noise and knowledge acquisition
-
Milan, Italy
-
M. V. Manago and Y. Kodratoff, “Noise and knowledge acquisition,” in Proc. 10th Int. Joint Conf. Artificial Intelligence, Milan, Italy, 1987, pp. 348–354.
-
(1987)
Proc. 10th Int. Joint Conf. Artificial Intelligence
, pp. 348-354
-
-
Manago, M.V.1
Kodratoff, Y.2
-
13
-
-
0003046840
-
A theory and methodology of inductive learning
-
R. S. Michalski, Eds., San Francisco, CA: Morgan Kaufmann
-
R. S. Michalski, “A theory and methodology of inductive learning,” in R. S. Michalski et al., Eds., Machine Learning: An Artificial Intelligence Approach, Vol. 1. San Francisco, CA: Morgan Kaufmann, 1983, pp. 83–134.
-
(1983)
Machine Learning: An Artificial Intelligence Approach
, vol.1
, pp. 83-134
-
-
Michalski, R.S.1
-
14
-
-
0003418739
-
Machine Learning, An Artificial Intelligence Approach
-
San Francisco, CA: Morgan Kaufmann
-
R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine Learning, An Artificial Intelligence Approach, Vol. 2. San Francisco, CA: Morgan Kaufmann, 1986.
-
, vol.2
-
-
Michalski, R.S.1
Carbonell, J.G.2
Mitchell, T.M.3
-
15
-
-
0002056465
-
Version spaces: A candidate elimination approach to rule learning
-
Cambridge, MA
-
T. M. Mitchell, “Version spaces: A candidate elimination approach to rule learning,” Proc. 5th Int. Joint Conf. Artificial Intelligence, Cambridge, MA, 1977, pp. 305–310.
-
(1977)
Proc. 5th Int. Joint Conf. Artificial Intelligence
, pp. 305-310
-
-
Mitchell, T.M.1
-
16
-
-
0002877253
-
Discovery of strong rules in databases
-
G. Piatetsky-Shapiro and W. J. Frawley, eds., Menlo Park, CA: AAAI/MIT
-
G. Piatetsky-Shapiro, “Discovery of strong rules in databases,” in G. Piatetsky-Shapiro and W. J. Frawley, eds., Knowledge Discovery in Databases. Menlo Park, CA: AAAI/MIT, 1991, pp. 229–238.
-
(1991)
Knowledge Discovery in Databases
, pp. 229-238
-
-
Piatetsky-Shapiro, G.1
-
17
-
-
0001182408
-
The effect of noise on concept learning
-
R. S. Michalski Eds., San Francisco, CA: Morgan Kaufmann
-
J. R. Quinlan, “The effect of noise on concept learning,” in R. S. Michalski et al, Eds., Machine Learning: An Artificial Intelligence Approach, Vol. 2. San Francisco, CA: Morgan Kaufmann, 1986, pp. 149–166.
-
(1986)
Machine Learning: An Artificial Intelligence Approach
, vol.2
, pp. 149-166
-
-
Quinlan, J.R.1
-
18
-
-
84990560021
-
Tree-structured bias
-
Minneapolis, MN, Aug.
-
S. J. Russell, “Tree-structured bias,” in Proc. 1988 AAAI Conf, Minneapolis, MN, Aug. 1988, pp. 641–645.
-
(1988)
Proc. 1988AAAI Conf.
, pp. 641-645
-
-
Russell, S.J.1
-
19
-
-
0003980387
-
Readings in Database Systems
-
San Francisco, CA: Morgan Kaufmann
-
M. Stonebraker, Readings in Database Systems. San Francisco, CA: Morgan Kaufmann, 1988.
-
-
-
Stonebraker, M.1
-
20
-
-
84990622422
-
Factorization in experiment generation
-
Philadelphia, PA, Aug.
-
D. Subramanian and J. Feigenbaum, “Factorization in experiment generation,” in Proc. 1986 AAAI Conf, Philadelphia, PA, Aug. 1986, pp. 518–522.
-
(1986)
Proc. 1986 AAAI Conf.
, pp. 518-522
-
-
Subramanian, D.1
Feigenbaum, J.2
-
21
-
-
0003469339
-
Principles of Database and Knowledge-Base Systems
-
Palo Alto, CA: Computer Science
-
J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1. Palo Alto, CA: Computer Science, 1988.
-
, vol.1
-
-
Ullman, J.D.1
|