메뉴 건너뛰기




Volumn 5, Issue 1, 1993, Pages 29-40

Data-Driven Discovery of Quantitative Rules in Relational Databases

Author keywords

attribute oriented induction; characteristic rules; classification rules; data driven learning algorithms; Knowledge discovery in databases; machine learning; quantitative rules

Indexed keywords

LEARNING SYSTEMS; RULE BASED SYSTEMS;

EID: 0027542839     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/69.204089     Document Type: Article
Times cited : (251)

References (21)
  • 1
    • 0002546079 scopus 로고
    • Attribute-oriented induction in relational databases
    • G.Piatetsky-Shapiro and W. J. Frawley, Eds. Menlo Park, CA: AAAI/MIT
    • Y. Cai, N. Cercone, and J. Han, “Attribute-oriented induction in relational databases,” in G. Piatetsky-Shapiro and W. J. Frawley, Eds. Knowledge Discovery in Databases. Menlo Park, CA: AAAI/MIT, 1990, pp. 213–228.
    • (1990) Knowledge Discovery in Databases , pp. 213-228
    • Cai, Y.1    Cercone, N.2    Han, J.3
  • 2
    • 0025600168 scopus 로고
    • An attribute-oriented approach for learning classification rules from relational databases
    • Los Angeles, CA, Feb.
    • Y. Cai, N. Cercone, and J. Han, “An attribute-oriented approach for learning classification rules from relational databases,” in Proc. 6th Int. Conf. Data Engineering, Los Angeles, CA, Feb. 1990, 281–288.
    • (1990) Proc. 6th Int. Conf. Data Engineering , pp. 281-288
    • Cai, Y.1    Cercone, N.2    Han, J.3
  • 3
    • 0013201657 scopus 로고
    • Foundations of semantic query optimization for deductive databases
    • in J. Minker, Ed, San Francisco. CA: Morgan Kaufmann
    • U. S. Chakravarthy, J. Grant, and J. Minker, “Foundations of semantic query optimization for deductive databases,” in J. Minker, Ed. Foundations of Deductive Databases and Logic Programming, San Francisco. CA: Morgan Kaufmann, 1988, pp. 243–274.
    • (1988) Foundations of Deductive Databases and Logic Programming , pp. 243-274
    • Chakravarthy, U.S.1    Grant, J.2    Minker, J.3
  • 5
    • 0003971841 scopus 로고    scopus 로고
    • The Handbook of Artificial Intelligence (Vol. III)
    • San Francisco, CA: William Kaufmann
    • P. Cohen and E. A. Feigenbaum, The Handbook of Artificial Intelligence (Vol. III). San Francisco, CA: William Kaufmann, 1983.
    • Cohen, P.1    Feigenbaum, E.A.2
  • 6
    • 0002032320 scopus 로고
    • A comparative review of selected methods for learning from examples
    • R. S. Michalski., Eds. San Francisco, CA: Morgan Kaufmann
    • T. G. Dietterich and R. S. Michalski, “A comparative review of selected methods for learning from examples,” in R. S. Michalski et al., Eds., Machine Learning: An Artificial Intelligence Approach, Vol. 1. San Francisco, CA: Morgan Kaufmann, 1983, pp. 41–82.
    • (1983) Machine Learning: An Artificial Intelligence Approach , vol.1 , pp. 41-82
    • Dietterich, T.G.1    Michalski, R.S.2
  • 7
    • 0003218928 scopus 로고
    • Improving inference through conceptual clustering
    • Seattle, WA, July
    • D. Fisher, “Improving inference through conceptual clustering,” in Proc. 1987 AAAI Conf, Seattle, WA, July 1987, pp. 461-465.
    • (1987) Proc. 1987 AAAI Conf. , pp. 461-465
    • Fisher, D.1
  • 8
    • 0021444827 scopus 로고
    • Logic and databases: A deductive approach
    • H. Gallaire, J. Minker, and J. Nicolas, “Logic and databases: A deductive approach,” ACM Comput. Survey, vol. 16, no. 2, pp. 153–185, 1984.
    • (1984) ACM Comput. Survey , vol.16 , Issue.2 , pp. 153-185
    • Gallaire, H.1    Minker, J.2    Nicolas, J.3
  • 9
    • 0003497307 scopus 로고
    • Logical Foundations of Artificial Intelligence
    • San Francisco, CA: Morgan Kaufmann
    • M. Genesereth and N. Nilsson, Logical Foundations of Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 1987.
    • (1987)
    • Genesereth, M.1    Nilsson, N.2
  • 10
    • 84990580502 scopus 로고
    • Quantifying the inductive bias in concept learning
    • Philadelphia, PA, Aug.
    • D. Haussler, “Quantifying the inductive bias in concept learning,” in Proc. 1986 AAAI Conf., Philadelphia, PA, Aug. 1986, pp. 485–489.
    • (1986) Proc. 1986 AAAI Conf. , pp. 485-489
    • Haussler, D.1
  • 11
    • 0001629292 scopus 로고
    • The process of scientific discovery: The strategy of experimentation
    • D. Kulkarni and H. A. Simon, “The process of scientific discovery: The strategy of experimentation,” Cognitive Sci., vol. 12, pp. 139-175, 1988.
    • (1988) Cognitive Sci. , vol.12 , pp. 139-175
    • Kulkarni, D.1    Simon, H.A.2
  • 13
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • R. S. Michalski, Eds., San Francisco, CA: Morgan Kaufmann
    • R. S. Michalski, “A theory and methodology of inductive learning,” in R. S. Michalski et al., Eds., Machine Learning: An Artificial Intelligence Approach, Vol. 1. San Francisco, CA: Morgan Kaufmann, 1983, pp. 83–134.
    • (1983) Machine Learning: An Artificial Intelligence Approach , vol.1 , pp. 83-134
    • Michalski, R.S.1
  • 14
    • 0003418739 scopus 로고    scopus 로고
    • Machine Learning, An Artificial Intelligence Approach
    • San Francisco, CA: Morgan Kaufmann
    • R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine Learning, An Artificial Intelligence Approach, Vol. 2. San Francisco, CA: Morgan Kaufmann, 1986.
    • , vol.2
    • Michalski, R.S.1    Carbonell, J.G.2    Mitchell, T.M.3
  • 15
    • 0002056465 scopus 로고
    • Version spaces: A candidate elimination approach to rule learning
    • Cambridge, MA
    • T. M. Mitchell, “Version spaces: A candidate elimination approach to rule learning,” Proc. 5th Int. Joint Conf. Artificial Intelligence, Cambridge, MA, 1977, pp. 305–310.
    • (1977) Proc. 5th Int. Joint Conf. Artificial Intelligence , pp. 305-310
    • Mitchell, T.M.1
  • 16
    • 0002877253 scopus 로고
    • Discovery of strong rules in databases
    • G. Piatetsky-Shapiro and W. J. Frawley, eds., Menlo Park, CA: AAAI/MIT
    • G. Piatetsky-Shapiro, “Discovery of strong rules in databases,” in G. Piatetsky-Shapiro and W. J. Frawley, eds., Knowledge Discovery in Databases. Menlo Park, CA: AAAI/MIT, 1991, pp. 229–238.
    • (1991) Knowledge Discovery in Databases , pp. 229-238
    • Piatetsky-Shapiro, G.1
  • 17
    • 0001182408 scopus 로고
    • The effect of noise on concept learning
    • R. S. Michalski Eds., San Francisco, CA: Morgan Kaufmann
    • J. R. Quinlan, “The effect of noise on concept learning,” in R. S. Michalski et al, Eds., Machine Learning: An Artificial Intelligence Approach, Vol. 2. San Francisco, CA: Morgan Kaufmann, 1986, pp. 149–166.
    • (1986) Machine Learning: An Artificial Intelligence Approach , vol.2 , pp. 149-166
    • Quinlan, J.R.1
  • 18
    • 84990560021 scopus 로고
    • Tree-structured bias
    • Minneapolis, MN, Aug.
    • S. J. Russell, “Tree-structured bias,” in Proc. 1988 AAAI Conf, Minneapolis, MN, Aug. 1988, pp. 641–645.
    • (1988) Proc. 1988AAAI Conf. , pp. 641-645
    • Russell, S.J.1
  • 19
    • 0003980387 scopus 로고    scopus 로고
    • Readings in Database Systems
    • San Francisco, CA: Morgan Kaufmann
    • M. Stonebraker, Readings in Database Systems. San Francisco, CA: Morgan Kaufmann, 1988.
    • Stonebraker, M.1
  • 20
    • 84990622422 scopus 로고
    • Factorization in experiment generation
    • Philadelphia, PA, Aug.
    • D. Subramanian and J. Feigenbaum, “Factorization in experiment generation,” in Proc. 1986 AAAI Conf, Philadelphia, PA, Aug. 1986, pp. 518–522.
    • (1986) Proc. 1986 AAAI Conf. , pp. 518-522
    • Subramanian, D.1    Feigenbaum, J.2
  • 21
    • 0003469339 scopus 로고    scopus 로고
    • Principles of Database and Knowledge-Base Systems
    • Palo Alto, CA: Computer Science
    • J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1. Palo Alto, CA: Computer Science, 1988.
    • , vol.1
    • Ullman, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.