-
1
-
-
0001213151
-
Fractal interpolation
-
M. F. Barnsley, “Fractal interpolation,” Constr. Approx., vol. 2, pp. 303–329, 1986.
-
(1986)
Constr. Approx.
, vol.2
, pp. 303-329
-
-
Barnsley, M.F.1
-
3
-
-
84941445456
-
The Elements of Real Analysis
-
R. G. Bartle, The Elements of Real Analysis. New York: Wiley, 1976.
-
(1976)
New York: Wiley
-
-
Bartle, R.G.1
-
4
-
-
0000955099
-
On the Weierstrass-Mandelbrot fractal function
-
M. V. Berry and Z. V. Lewis, “On the Weierstrass-Mandelbrot fractal function,” Proc. Roy. Soc., Ser. A, vol. 370, pp. 459–484, 1980.
-
(1980)
Proc. Roy. Soc., Ser. A
, vol.370
, pp. 459-484
-
-
Berry, M.V.1
Lewis, Z.V.2
-
5
-
-
0000728518
-
On the sum of digits of real numbers represented in the dyadic system (On sets of fractional dimension-II)
-
also “Sets of fractional dimension—IV: On rational approximation to real numbers,”
-
A. S. Besicovitch, “On the sum of digits of real numbers represented in the dyadic system (On sets of fractional dimension-II),” Math. Annalen, vol. 110, pp. 321–329, 1934; also “Sets of fractional dimension—IV: On rational approximation to real numbers,” J. London Math. Soc., vol. 9, pp. 126–131, 1934.
-
(1934)
J. London Math. Soc.
, vol.110
, pp. 321-329
-
-
Besicovitch, A.S.1
-
6
-
-
84962992649
-
Sets of fractional dimension-V: On dimensional numbers of some continuous curves
-
A. S. Besicovitch and H. D. Ursell, “Sets of fractional dimension—V: On dimensional numbers of some continuous curves,” J. London Math. Soc., vol. 12, pp. 18–25, 1937.
-
(1937)
J. London Math. Soc.
, vol.12
, pp. 18-25
-
-
Besicovitch, A.S.1
Ursell, H.D.2
-
7
-
-
0000636568
-
Ensembles impropres et nombre dimensionnel
-
361–376, 1928; also in Bull. Sci. Math, vol. 11–53, pp. 185–192
-
G. Bouligand, “Ensembles impropres et nombre dimensionnel,” Bull. Sci. Math., vol. 11–52, pp. 320–344, 361–376, 1928; also in Bull. Sci. Math, vol. 11–53, pp. 185–192, 1929.
-
(1928)
Bull. Sci. Math.
, vol.11-52
, pp. 320-344
-
-
Bouligand, G.1
-
8
-
-
0001655696
-
Evaluating the fractal dimension of profiles
-
Feb.
-
B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, and S. W. Zucker, “Evaluating the fractal dimension of profiles,” Phys. Rev. A, vol. 39, pp. 1500–1512, Feb. 1989.
-
(1989)
Phys. Rev. A
, vol.39
, pp. 1500-1512
-
-
Dubuc, B.1
Quiniou, J.F.2
Roques-Carmes, C.3
Tricot, C.4
Zucker, S.W.5
-
9
-
-
0005625354
-
Fractal Geometry: Mathematical Foundations and Applications
-
K. Falconer, Fractal Geometry: Mathematical Foundations and Applications. New York: Wiley, 1990.
-
(1990)
New York: Wiley
-
-
Falconer, K.1
-
10
-
-
48749145669
-
The dimension of chaotic attractors
-
J. D. Farmer, E. Ott, and J. A. Yorke, “The dimension of chaotic attractors,” Physica 7D, pp. 153–180, 1983.
-
(1983)
Physica 7D
, pp. 153-180
-
-
Farmer, J.D.1
Ott, E.2
Yorke, J.A.3
-
11
-
-
0023383187
-
Image analysis using mathematical morphology
-
July
-
R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Part. Anal. Machine Intell., vol. PAM1-9, pp. 523–550, July 1987.
-
(1987)
IEEE Trans. Part. Anal. Machine Intell.
, vol.PAM1-9
, pp. 523-550
-
-
Haralick, R.M.1
Sternberg, S.R.2
Zhuang, X.3
-
12
-
-
0040457179
-
The capacity for a class of fractal functions
-
D. P. Hardin and P. R. Massopust, “The capacity for a class of fractal functions,” Commun. Math. Phys., vol. 105, pp. 455–460, 1986.
-
(1986)
Commun. Math. Phys.
, vol.105
, pp. 455-460
-
-
Hardin, D.P.1
Massopust, P.R.2
-
13
-
-
84966204183
-
Weierstrass's nondifferentiable function
-
G. H. Hardy, “Weierstrass’s nondifferentiable function,” Trans. Amer. Math. Soc., vol. 17, pp. 322–323, 1916.
-
(1916)
Trans. Amer. Math. Soc.
, vol.17
, pp. 322-323
-
-
Hardy, G.H.1
-
14
-
-
34250950477
-
Dimension and ausseres Mass
-
F. Hausdorff, “Dimension and ausseres Mass,” Math. Annalen. vol. 79, pp. 157–179, 1918.
-
(1918)
Math. Annalen
, vol.79
, pp. 157-179
-
-
Hausdorff, F.1
-
15
-
-
0025573319
-
The algebraic basis of mathematical morphology—Part I: Dilations and erosions
-
H. J. A. M. Heijmans and C. Ronse, “The algebraic basis of mathematical morphology—Part I: Dilations and erosions,” Comput. Vision, Graphics, Image Processing, vol. 50, pp. 245–295. 1990.
-
(1990)
Comput. Vision, Graphics, Image Processing
, vol.50
, pp. 245-295
-
-
Heijmans, H.J.A.M.1
Ronse, C.2
-
17
-
-
0001904852
-
Epsilon-entropy and epsilon-capacity of sets in functional spaces
-
(translated in Trans. Amer. Math. Soc., (ser. 2) vol. 17, pp. 277–364, 1961)
-
A. N. Kolmogorov and V. M. Tihomirov, “Epsilon-entropy and epsilon-capacity of sets in functional spaces,” Usp. Matematicheskikh Nauk. (N.S.), vol. 14, pp. 3–86, 1959 (translated in Trans. Amer. Math. Soc., (ser. 2) vol. 17, pp. 277–364, 1961).
-
(1959)
Usp. Matematicheskikh Nauk. (N.S.)
, vol.14
, pp. 3-86
-
-
Kolmogorov, A.N.1
Tihomirov, V.M.2
-
18
-
-
77949515579
-
Fractional Brownian motion: A maximum likelihood estimator and its application to image texture
-
Sep.
-
T. Lundahl, W. J. Ohley, S. M. Kay, and R. Siffert, “Fractional Brownian motion: A maximum likelihood estimator and its application to image texture,” IEEE Trans. Med. Imaging, vol. MI-5, pp. 152–160, Sep. 1986.
-
(1986)
IEEE Trans. Med. Imaging
, vol.MI-5
, pp. 152-160
-
-
Lundahl, T.1
Ohley, W.J.2
Kay, S.M.3
Siffert, R.4
-
19
-
-
33745464317
-
The Fractal Geometry of Nature
-
1983
-
B. B. Mandelbrot, The Fractal Geometry of Nature. New York: Freeman, 1982/1983.
-
(1982)
New York: Freeman
-
-
Mandelbrot, B.B.1
-
20
-
-
84931536302
-
Self-affine fractals and fractal dimension
-
B. B. Mandelbrot, “Self-affine fractals and fractal dimension,” Phys. Scripta, vol. 32, pp. 257–260, 1985.
-
(1985)
Phys. Scripta
, vol.32
, pp. 257-260
-
-
Mandelbrot, B.B.1
-
21
-
-
0000501589
-
Fractional Brownian motion, fractional noise, and applications
-
B. B. Mandelbrot and J. van Ness, “Fractional Brownian motion, fractional noise, and applications,” SUM Rev., vol. 10, no. 4, pp. 422–437, 1968.
-
(1968)
SUM Rev.
, vol.10
, Issue.4
, pp. 422-437
-
-
Mandelbrot, B.B.1
van Ness, J.2
-
22
-
-
84944495957
-
Computer experiments with fractional Brownian motion-Parts 1-3
-
Feb.
-
B. B. Mandelbrot and J. R. Wallis, “Computer experiments with fractional Brownian motion—Parts 1-3,” Water Resources Res., vol. 5, pp. 228–267, Feb. 1969.
-
(1969)
Water Resources Res.
, vol.5
, pp. 228-267
-
-
Mandelbrot, B.B.1
Wallis, J.R.2
-
23
-
-
0026392349
-
Fractals aspects of speech signals: Dimension and interpolation
-
Toronto, Canada, May
-
P. Maragos, “Fractals aspects of speech signals: Dimension and interpolation,” in Proc. IEEE ICASSP-91, Toronto, Canada, May 1991.
-
(1991)
Proc. IEEE ICASSP-91
-
-
Maragos, P.1
-
24
-
-
0023400884
-
Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters
-
Aug.
-
P. Maragos and R. W. Schafer, “Morphological filters—Part I: Their set-theoretic analysis and relations to linear shift-invariant filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 1153–1169, Aug. 1987.
-
(1987)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-35
, pp. 1153-1169
-
-
Maragos, P.1
Schafer, R.W.2
-
25
-
-
0025415163
-
Morphological systems for multidimensional signal processing
-
Apr.
-
P. Maragos and R. W. Schafer, “Morphological systems for multidimensional signal processing,” Proc. IEEE, vol. 78, pp. 690–710, Apr. 1990.
-
(1990)
Proc. IEEE
, vol.78
, pp. 690-710
-
-
Maragos, P.1
Schafer, R.W.2
-
26
-
-
0024919232
-
Measuring fractal dimension: Morphological estimates and iterative optimization
-
P. Maragos and F. K. Sun, “Measuring fractal dimension: Morphological estimates and iterative optimization,” in Proc. SPIE Int. Soc. Opt. Eng., vol. 1199, pp. 416–430, 1989.
-
(1989)
Proc. SPIE Int. Soc. Opt. Eng.
, vol.1199
, pp. 416-430
-
-
Maragos, P.1
Sun, F.K.2
-
27
-
-
0026402527
-
Hidden-variable fractal interpolation of discrete sequences
-
Toronto, Canada, May
-
D. S. Mazel and M. H. Hayes, III, “Hidden-variable fractal interpolation of discrete sequences,” in Proc. IEEE ICASSP 91, Toronto, Canada, May 1991.
-
(1991)
Proc. IEEE ICASSP
, pp. 91
-
-
Mazel, D.S.1
Hayes, M.H.2
-
28
-
-
84972500327
-
The Hausdorff dimension of general Sierpinski carpets
-
C. McMullen, “The Hausdorff dimension of general Sierpinski carpets,” Nagoya Math. J., vol. 96, pp. 1–9, 1984.
-
(1984)
Nagoya Math. J.
, vol.96
, pp. 1-9
-
-
McMullen, C.1
-
29
-
-
29444445446
-
Diffusion-controlled cluster formation in 2 – 6 dimensional space
-
P. Meakin, “Diffusion-controlled cluster formation in 2–6 dimensional space,” Phys. Rev. A, vol. 23, no. 3, pp. 1495–1507, 1983.
-
(1983)
Phys. Rev. A
, vol.23
, Issue.3
, pp. 1495-1507
-
-
Meakin, P.1
-
30
-
-
0007649243
-
Uber die Begriffe Lange, Oberflache und Volumen
-
H. Minkowski, “Uber die Begriffe Lange, Oberflache und Volumen,” Jahresber. Deutch. Mathematikerverein., vol. 9, pp. 115–121, 1901.
-
(1901)
Jahresber. Deutch. Mathematikerverein.
, vol.9
, pp. 115-121
-
-
Minkowski, H.1
-
31
-
-
84945723489
-
The problem of robust shape description
-
London, U.K.
-
D. Mumford, “The problem of robust shape description,” in Proc. 1st Int. Conf. Comput. Vision, London, U.K., 1987.
-
(1987)
Proc. 1st Int. Conf. Comput. Vision
-
-
Mumford, D.1
-
32
-
-
0021455412
-
Multiple resolution texture analysis and classification
-
July
-
S. Peleg, J. Naor, R. Hartley, and D. Avnir, “Multiple resolution texture analysis and classification,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-6, pp. 518–523, July 1984.
-
(1984)
IEEE Trans. Patt. Anal. Machine Intell.
, vol.PAMI-6
, pp. 518-523
-
-
Peleg, S.1
Naor, J.2
Hartley, R.3
Avnir, D.4
-
33
-
-
0024872688
-
Multiscale fractal and correlation signatures for image screening and natural clutter suppression
-
T. Peli, V. Tom, and B. Lee, “Multiscale fractal and correlation signatures for image screening and natural clutter suppression,” Proc. SPIE Int. Soc. Opt. Eng., vol. 1199, pp. 402–415, 1989.
-
(1989)
Proc. SPIE Int. Soc. Opt. Eng.
, vol.1199
, pp. 402-415
-
-
Peli, T.1
Tom, V.2
Lee, B.3
-
34
-
-
0021523150
-
Fractal-based description of natural scenes
-
Nov.
-
A. P. Pentland, “Fractal-based description of natural scenes,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-6, pp. 661–674, Nov. 1984.
-
(1984)
IEEE Trans. Patt. Anal. Machine Intell.
, vol.PAMI-6
, pp. 661-674
-
-
Pentland, A.P.1
-
35
-
-
1542319659
-
Image Analysis and Mathematical Morphology
-
J. Serra, Image Analysis and Mathematical Morphology. New York: Academic, 1982.
-
(1982)
New York: Academic
-
-
Serra, J.1
-
36
-
-
0026721882
-
An overview of morphological filtering
-
J. Serra and L. Vincent, “An overview of morphological filtering,” Circuits, Syst., Signal Processing, vol. 11, no. 1, pp. 47–108, 1992.
-
(1992)
Circuits, Syst., Signal Processing
, vol.11
, Issue.1
, pp. 47-108
-
-
Serra, J.1
Vincent, L.2
-
38
-
-
0022773971
-
Grayscale morphology
-
S. R. Sternberg, “Grayscale morphology,” Comput. Vision, Graph., Image Processing, vol. 35, pp. 333–355, 1986.
-
(1986)
Comput. Vision, Graph., Image Processing
, vol.35
, pp. 333-355
-
-
Sternberg, S.R.1
-
39
-
-
0001917246
-
Localized measurement of image fractal dimension using Gabor filters
-
June
-
B. J. Super and A. C. Bovik, “Localized measurement of image fractal dimension using Gabor filters,” J. Visual Commun. Image Represent., vol. 2, pp. 114–128, June 1991.
-
(1991)
J. Visual Commun. Image Represent.
, vol.2
, pp. 114-128
-
-
Super, B.J.1
Bovik, A.C.2
-
40
-
-
0026398588
-
Maximum likelihood estimation of the fractal dimensions of stochastic fractals and Cramer-Rao bounds
-
Toronto, Canada, May
-
A. H. Tewfik and M. Deriche, “Maximum likelihood estimation of the fractal dimensions of stochastic fractals and Cramer-Rao bounds,” in Proc. IEEE ICASSP-91, Toronto, Canada, May 1991.
-
(1991)
Proc. IEEE ICASSP-91
-
-
Tewfik, A.H.1
Deriche, M.2
-
41
-
-
0000941604
-
Evaluation de la dimension fractale d’un graphe
-
C. Tricot, J. Quiniou, D. Wehbi, C. Roques-Carmes, and B. Dubuc, “Evaluation de la dimension fractale d'un graphe,” Rev. Phys. Appl., vol. 23, pp. 111–124, 1988.
-
(1988)
Rev. Phys. Appl.
, vol.23
, pp. 111-124
-
-
Tricot, C.1
Quiniou, J.2
Wehbi, D.3
Roques-Carmes, C.4
Dubuc, B.5
-
42
-
-
0002998107
-
Fractals in nature: From characterization to simulation
-
H.-O. Peitgen and D. Saupe, Eds. New York: Springer-Verlag
-
R. F. Voss, “Fractals in nature: From characterization to simulation,” in The Science of Fractal Images, H.-O. Peitgen and D. Saupe, Eds. New York: Springer-Verlag, 1988.
-
(1988)
The Science of Fractal Images
-
-
Voss, R.F.1
-
43
-
-
84945723492
-
Fractal signal modeling and processing using wavelets
-
Sept.
-
G. W. Wornell and A. V. Oppenheim, “Fractal signal modeling and processing using wavelets,” in Proc. 1990 DSP Workshop, Mohonk, New Paltz, NY, Sept. 1990.
-
(1990)
Proc. 1990 DSP Workshop,Mohonk, New Paltz, NY
-
-
Wornell, G.W.1
Oppenheim, A.V.2
|