-
2
-
-
0023665998
-
-
R. W. Williams, A. Chang, D. Juretic, S. Loughran, Biochim. Biophys. Acta 916, 200 (1987).
-
(1987)
Biochim. Biophys. Acta
, vol.916
, pp. 200
-
-
Williams, R.W.1
Chang, A.2
Juretic, D.3
Loughran, S.4
-
5
-
-
0025253106
-
-
S. Padmanabhan, S. Marqusee, T. Ridgeway, T. M. Laue, R. L. Baldwin, Nature 344, 268 (1990).
-
(1990)
Nature
, vol.344
, pp. 268
-
-
Padmanabhan, S.1
Marqusee, S.2
Ridgeway, T.3
Laue, T.M.4
Baldwin, R.L.5
-
6
-
-
0025260032
-
-
P. C. Lyu, M. I. Liff, L. A. Marky, N. R. Kallenbach, Science 250, 669 (1990).
-
(1990)
Science
, vol.250
, pp. 669
-
-
Lyu, P.C.1
Liff, M.I.2
Marky, L.A.3
Kallenbach, N.R.4
-
7
-
-
0024997237
-
-
G. Merutka, W. Lipton, W. Shalongo, S.-H. Park, E. Stellwagen, Biochemistry 29, 7511 (1990).
-
(1990)
Biochemistry
, vol.29
, pp. 7511
-
-
Merutka, G.1
Lipton, W.2
Shalongo, W.3
Park, S.-H.4
Stellwagen, E.5
-
12
-
-
85044564369
-
-
in preparation
-
44 is included is Leu-Asn-Ala-Ala-Lys-Ser-Glu-Leu-Asp-Lys-Ala-Ile. For the 12 residues in the α helix, the mean Ramachandran angles are φ = -67° ± 9° and ψ = -41° ± 6°.
-
-
-
Blaber, M.1
-
13
-
-
0022429789
-
-
J. W. Taylor, J. Ott, F. Eckstein, Nucleic Acids Res. 13, 8765 (1985); T. A. Kunkel, J. D. Roberts, R. A. Zakour, Methods Enzymol. 154, 367 (1987).
-
(1985)
Nucleic Acids Res.
, vol.13
, pp. 8765
-
-
Taylor, J.W.1
Ott, J.2
Eckstein, F.3
-
14
-
-
0023613953
-
-
J. W. Taylor, J. Ott, F. Eckstein, Nucleic Acids Res. 13, 8765 (1985); T. A. Kunkel, J. D. Roberts, R. A. Zakour, Methods Enzymol. 154, 367 (1987).
-
(1987)
Methods Enzymol.
, vol.154
, pp. 367
-
-
Kunkel, T.A.1
Roberts, J.D.2
Zakour, R.A.3
-
15
-
-
0023494191
-
-
T. Alber and B. W. Matthews, Methods Enzymol. 154, 511 (1987); D. C. Muchmore, L. P. McIntosh, C. B. Russell, D. E. Anderson, F. W. Dahlquist, ibid. 177, 44 (1989); A. R. Poteete, S. Dao-pin, H. Nicholson, B. W. Matthews, Biochemistry 30, 1425 (1991).
-
(1987)
Methods Enzymol.
, vol.154
, pp. 511
-
-
Alber, T.1
Matthews, B.W.2
-
16
-
-
0024836418
-
-
T. Alber and B. W. Matthews, Methods Enzymol. 154, 511 (1987); D. C. Muchmore, L. P. McIntosh, C. B. Russell, D. E. Anderson, F. W. Dahlquist, ibid. 177, 44 (1989); A. R. Poteete, S. Dao-pin, H. Nicholson, B. W. Matthews, Biochemistry 30, 1425 (1991).
-
(1989)
Methods Enzymol.
, vol.177
, pp. 44
-
-
Muchmore, D.C.1
McIntosh, L.P.2
Russell, C.B.3
Anderson, D.E.4
Dahlquist, F.W.5
-
17
-
-
0025761294
-
-
T. Alber and B. W. Matthews, Methods Enzymol. 154, 511 (1987); D. C. Muchmore, L. P. McIntosh, C. B. Russell, D. E. Anderson, F. W. Dahlquist, ibid. 177, 44 (1989); A. R. Poteete, S. Dao-pin, H. Nicholson, B. W. Matthews, Biochemistry 30, 1425 (1991).
-
(1991)
Biochemistry
, vol.30
, pp. 1425
-
-
Poteete, A.R.1
Dao-pin, S.2
Nicholson, H.3
Matthews, B.W.4
-
18
-
-
85044565453
-
-
note
-
1, a = 54.1 Å, b = 55.9 Å, c = 59.9 Å, β = 103.6°, two molecules per asymmetric unit resolution of 1.85 Å; Trp: space group P1, a = 54.4 Å, b = 64.3 Å, c = 59.5 Å, α = 101.1°, β = 89.9°, γ = 115.0°, four molecules per asymmetric unit, resolution of 2.05 Å). All other variants that were crystallized were isomorphous with the wild type (resolution of 1.7 to 1.9 Å). The Glu variant gave crystals in yet another form. Diffraction data were collected (26) and all the structures were determined and refined to the resolution limits defined above (R values between 14.9 and 17.2%; bond length deviation of 0.012 to 0.019 Å; bond angle deviation of 1.9° to 2.3°).
-
-
-
-
19
-
-
85044563512
-
-
note
-
1 = -76°) substitutions at site 131 that β branched amino acids might be helix-destabilizing because of the strain introduced, although the apparent strain energy was not large (17). The possible involvement of strain in such cases remains an open question.
-
-
-
-
21
-
-
0025856806
-
-
K. A. Dill and D. Shortle, Annu. Rev. Biochem. 60, 795 (1991); D. Shortle, H. S. Chan, K. A. Dill, Protein Sci. 1, 201 (1992).
-
(1991)
Annu. Rev. Biochem.
, vol.60
, pp. 795
-
-
Dill, K.A.1
Shortle, D.2
-
22
-
-
0027050824
-
-
K. A. Dill and D. Shortle, Annu. Rev. Biochem. 60, 795 (1991); D. Shortle, H. S. Chan, K. A. Dill, Protein Sci. 1, 201 (1992).
-
(1992)
Protein Sci.
, vol.1
, pp. 201
-
-
Shortle, D.1
Chan, H.S.2
Dill, K.A.3
-
24
-
-
0015386346
-
-
P. Y. Chou, M. Wells, G. D. Fasman, Biochemistry 11, 3028 (1972), O. B. Ptitsyn, Pure Appl. Chem. 31, 227 (1972).
-
(1972)
Biochemistry
, vol.11
, pp. 3028
-
-
Chou, P.Y.1
Wells, M.2
Fasman, G.D.3
-
25
-
-
0015272079
-
-
P. Y. Chou, M. Wells, G. D. Fasman, Biochemistry 11, 3028 (1972), O. B. Ptitsyn, Pure Appl. Chem. 31, 227 (1972).
-
(1972)
Pure Appl. Chem.
, vol.31
, pp. 227
-
-
Ptitsyn, O.B.1
-
26
-
-
0003604014
-
-
Wiley, New York, ed. 2
-
C. Tanford, The Hydrophobic Effect (Wiley, New York, ed. 2, 1980); C. Chothia, Nature 248, 338 (1974); F. M. Richards, Annu. Rev. Biophys. Bioeng. 6, 151 (1977); R. B. Hermann, Proc. Natl. Acad. Sci. U.S.A. 74, 4144 (1977); A. E. Eriksson et al., Science 255, 178 (1992).
-
(1980)
The Hydrophobic Effect
-
-
Tanford, C.1
-
27
-
-
0016352763
-
-
C. Tanford, The Hydrophobic Effect (Wiley, New York, ed. 2, 1980); C. Chothia, Nature 248, 338 (1974); F. M. Richards, Annu. Rev. Biophys. Bioeng. 6, 151 (1977); R. B. Hermann, Proc. Natl. Acad. Sci. U.S.A. 74, 4144 (1977); A. E. Eriksson et al., Science 255, 178 (1992).
-
(1974)
Nature
, vol.248
, pp. 338
-
-
Chothia, C.1
-
28
-
-
0017429069
-
-
C. Tanford, The Hydrophobic Effect (Wiley, New York, ed. 2, 1980); C. Chothia, Nature 248, 338 (1974); F. M. Richards, Annu. Rev. Biophys. Bioeng. 6, 151 (1977); R. B. Hermann, Proc. Natl. Acad. Sci. U.S.A. 74, 4144 (1977); A. E. Eriksson et al., Science 255, 178 (1992).
-
(1977)
Annu. Rev. Biophys. Bioeng.
, vol.6
, pp. 151
-
-
Richards, F.M.1
-
29
-
-
0017702985
-
-
C. Tanford, The Hydrophobic Effect (Wiley, New York, ed. 2, 1980); C. Chothia, Nature 248, 338 (1974); F. M. Richards, Annu. Rev. Biophys. Bioeng. 6, 151 (1977); R. B. Hermann, Proc. Natl. Acad. Sci. U.S.A. 74, 4144 (1977); A. E. Eriksson et al., Science 255, 178 (1992).
-
(1977)
Proc. Natl. Acad. Sci. U.S.A.
, vol.74
, pp. 4144
-
-
Hermann, R.B.1
-
30
-
-
0026567907
-
-
C. Tanford, The Hydrophobic Effect (Wiley, New York, ed. 2, 1980); C. Chothia, Nature 248, 338 (1974); F. M. Richards, Annu. Rev. Biophys. Bioeng. 6, 151 (1977); R. B. Hermann, Proc. Natl. Acad. Sci. U.S.A. 74, 4144 (1977); A. E. Eriksson et al., Science 255, 178 (1992).
-
(1992)
Science
, vol.255
, pp. 178
-
-
Eriksson, A.E.1
-
31
-
-
85044564085
-
-
note
-
44, the hydrocarbon surface area that these two residues would then bury is close to their observed hydro-phobic stabilization (→ in fig. 2).
-
-
-
-
33
-
-
0026955827
-
-
H. Nichoteon, D. E. Tronrud, W. J. Becktel, B. W. Metthews, Biopolymers 32, 1431 (1992).
-
(1992)
Biopolymers
, vol.32
, pp. 1431
-
-
Nichoteon, H.1
Tronrud, D.E.2
Becktel, W.J.3
Metthews, B.W.4
-
35
-
-
0000731339
-
-
M. G. Rossmann, J. Appl. Crystallogr. 12, 225 (1979); M. F. Schmid et al., Acta Crystallogr. A 37, 701 (1981); R. Hamlin, Methods Enzymol. 114, 416 (1985).
-
(1979)
J. Appl. Crystallogr.
, vol.12
, pp. 225
-
-
Rossmann, M.G.1
-
36
-
-
0000413367
-
-
M. G. Rossmann, J. Appl. Crystallogr. 12, 225 (1979); M. F. Schmid et al., Acta Crystallogr. A 37, 701 (1981); R. Hamlin, Methods Enzymol. 114, 416 (1985).
-
(1981)
Acta Crystallogr. A
, vol.37
, pp. 701
-
-
Schmid, M.F.1
-
37
-
-
0022293584
-
-
M. G. Rossmann, J. Appl. Crystallogr. 12, 225 (1979); M. F. Schmid et al., Acta Crystallogr. A 37, 701 (1981); R. Hamlin, Methods Enzymol. 114, 416 (1985).
-
(1985)
Methods Enzymol.
, vol.114
, pp. 416
-
-
Hamlin, R.1
-
41
-
-
85044566542
-
-
note
-
γ of Met) was included in the calculation. The radius of the probe used for the calculations was 1.4 Å. The straight line was fitted by linear regression to the points for Asn, Glu, Ser, Thr, Val, Lys. Ile. and Leu (correlation coefficient = 0.96).
-
-
-
-
42
-
-
85044564212
-
-
in preparation
-
-1). Estimates of buried surface area are therefore sensitive to changes in side chain conformation, geometry of the α helix, and the model used in the estimation of the solvent-exposed area in the unfolded state. In an attempt to minimize these sources of uncertainly, we based the surface area calculation only on the side chains of the substituted residue. Calculations of surface area based on the helix as a whole, as well as attempts to estimate entropic effects, will be described elsewhere (M. Blaber et al., in preparation).
-
-
-
Blaber, M.1
-
43
-
-
85044565428
-
-
Abbreviations: A, Ala; C, Cys; D, Asp; E, Glu, F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; Q, Gin; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr
-
Abbreviations: A, Ala; C, Cys; D, Asp; E, Glu, F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; Q, Gin; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.
-
-
-
-
45
-
-
85044563046
-
-
We thank S. Pepiot and J. Wozniak for help with purifying the mutant lysozymes, G. D. Rose and F. M. Richards for helpful comments on the manuscript, and J. Lindstrom and W. A. Baase for determining the thermodynamic parameters. Supported by grants from the National Institutes of Health (GM 21967) and the Lucille P. Markey Charitable Trust
-
We thank S. Pepiot and J. Wozniak for help with purifying the mutant lysozymes, G. D. Rose and F. M. Richards for helpful comments on the manuscript, and J. Lindstrom and W. A. Baase for determining the thermodynamic parameters. Supported by grants from the National Institutes of Health (GM 21967) and the Lucille P. Markey Charitable Trust.
-
-
-
|