-
1
-
-
0026853792
-
Modeling of multiconductor systems for packaging and interconnecting high-speed digital IC’s
-
Apr.
-
T. F. Hayes and J. J. Barrett, “Modeling of multiconductor systems for packaging and interconnecting high-speed digital IC’s,” IEEE Trans. Computer-Aided Design, vol. 11, pp. 424–431, Apr. 1992.
-
(1992)
IEEE Trans. Computer-Aided Design
, vol.11
, pp. 424-431
-
-
Hayes, T.F.1
Barrett, J.J.2
-
2
-
-
0018542182
-
Survey of computer-aided electrical analysis of integrated circuit interconnections
-
Nov.
-
A. E. Ruehli, “Survey of computer-aided electrical analysis of integrated circuit interconnections,” IBM J. Res. Develop., vol. 23, pp. 626–639, Nov. 1979.
-
(1979)
IBM J. Res. Develop.
, vol.23
, pp. 626-639
-
-
Ruehli, A.E.1
-
3
-
-
84941604808
-
Three-dimensional finite element analysis of inductance and capacitance matrices
-
J. R. Brauer, R. W. Nopper, Jr., and D. C. Gates, “Three-dimensional finite element analysis of inductance and capacitance matrices,” in Proc. IEEE Topical Meeting on Electrical Performance of Electronic Packaging, pp. 84–86, 1992.
-
(1992)
Proc. IEEE Topical Meeting on Electrical Performance of Electronic Packaging
, pp. 84-86
-
-
Brauer, J.R.1
Nopper, R.W.2
Gates, D.C.3
-
5
-
-
0025458498
-
An electromagnetic approach for modeling highperformance computer packages
-
July
-
B. J. Rubin, “An electromagnetic approach for modeling highperformance computer packages,” IBM J. Res. Dev., vol. 34, pp. 585–600, July 1990.
-
(1990)
IBM J. Res. Dev
, vol.34
, pp. 585-600
-
-
Rubin, B.J.1
-
6
-
-
33747998002
-
Direct Maxwell’s equation solvers in time and frequency domains—A review
-
H. L. Bertoni and L. B. Felsen, Eds. Plenum Press
-
R. Mittra and J.-F. Lee, “Direct Maxwell’s equation solvers in time and frequency domains—A review,” in Directions in Electromagnetic Wave Modeling, H. L. Bertoni and L. B. Felsen, Eds. Plenum Press, 1991, pp. 171–184.
-
(1991)
Directions in Electromagnetic Wave Modeling
, pp. 171-184
-
-
Mittra, R.1
Lee, J.-F.2
-
7
-
-
84894021661
-
Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media
-
May
-
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302–307, May 1966.
-
(1966)
IEEE Trans. Antennas Propagat
, vol.AP-14
, pp. 302-307
-
-
Yee, K.S.1
-
9
-
-
0026407952
-
Full wave analysis of propagation characteristics of a through hole using the finite-difference time-domain method
-
Dec.
-
S. Maeda, T. Kashiwa, and I. Fukai, “Full wave analysis of propagation characteristics of a through hole using the finite-difference time-domain method,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 2154–2159, Dec. 1991.
-
(1991)
IEEE Trans. Microwave Theory Tech
, vol.39
, pp. 2154-2159
-
-
Maeda, S.1
Kashiwa, T.2
Fukai, I.3
-
10
-
-
0024168129
-
Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities
-
Dec.
-
X. Zhang and K. K. Mei, “Time-domain finite difference approach to the calculation of the frequency-dependent characteristics of microstrip discontinuities,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1775–1787, Dec. 1988.
-
(1988)
IEEE Trans. Microwave Theory Tech
, vol.36
, pp. 1775-1787
-
-
Zhang, X.1
Mei, K.K.2
-
11
-
-
0019632712
-
Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations
-
Nov.
-
G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromag. Compat., vol. 23, pp. 377–382, Nov. 1981.
-
(1981)
IEEE Trans. Electromag. Compat
, vol.23
, pp. 377-382
-
-
Mur, G.1
-
12
-
-
0026851591
-
A dispersive boundary condition for microstrip component analysis using the FD-TD method
-
Apr.
-
Z. Bi, K. Wu, C. Wu, and J. Litva, “A dispersive boundary condition for microstrip component analysis using the FD-TD method,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 774–777, Apr. 1992.
-
(1992)
IEEE Trans. Microwave Theory Tech
, vol.40
, pp. 774-777
-
-
Bi, Z.1
Wu, K.2
Wu, C.3
Litva, J.4
-
13
-
-
0023961358
-
Calculations of the dispersive characteristics of microstrip discontinuities by the time-domain finite difference method
-
Feb.
-
X. Zhang, J. Fang, K. K. Mei, and Y. Liu, “Calculations of the dispersive characteristics of microstrip discontinuities by the time-domain finite difference method,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 263–267, Feb. 1988.
-
(1988)
IEEE Trans. Microwave Theory Tech
, vol.36
, pp. 263-267
-
-
Zhang, X.1
Fang, J.2
Mei, K.K.3
Liu, Y.4
-
14
-
-
0008094060
-
Time-domain electromagnetic analysis of interconnects in a computer chip package
-
Dec.
-
W. D. Becker, P. Harms, and R. Mittra, “Time-domain electromagnetic analysis of interconnects in a computer chip package,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2155–2163, Dec. 1992.
-
(1992)
IEEE Trans. Microwave Theory Tech
, vol.40
, pp. 2155-2163
-
-
Becker, W.D.1
Harms, P.2
Mittra, R.3
-
15
-
-
0021005334
-
An accurate description of dispersion in microstrip
-
Dec.
-
P. Pramanick and P. Bhartia, “An accurate description of dispersion in microstrip,” Microwave J., pp. 89–96, Dec. 1983.
-
(1983)
Microwave J
, pp. 89-96
-
-
Pramanick, P.1
Bhartia, P.2
-
16
-
-
0003623517
-
Computer-Aided Design of Microwave Circuits
-
Dedham, MA: Artech House
-
K. C. Gupta, R. Grag, and R. Chadha, Computer-Aided Design of Microwave Circuits. Dedham, MA: Artech House, 1981.
-
-
-
Gupta, K.C.1
Grag, R.2
Chadha, R.3
-
17
-
-
0025263139
-
FDTD algorithm in curvilinear coordinates
-
Jan.
-
M. Fusco, “FDTD algorithm in curvilinear coordinates,” IEEE Trans. Antennas Propagat., vol. 38, pp. 76–89, Jan. 1990.
-
(1990)
IEEE Trans. Antennas Propagat
, vol.38
, pp. 76-89
-
-
Fusco, M.1
-
18
-
-
0026238009
-
A three-dimensional FDTD algorithm in curvilinear coordinates
-
Oct.
-
M. A. Fusco, M. V. Smith, and L. W. Gordon, “A three-dimensional FDTD algorithm in curvilinear coordinates,” IEEE Trans. Antennas Propagat., vol. 39, pp. 1463–1471, Oct. 1991.
-
(1991)
IEEE Trans. Antennas Propagat
, vol.39
, pp. 1463-1471
-
-
Fusco, M.A.1
Smith, M.V.2
Gordon, L.W.3
-
19
-
-
0026400227
-
Finite difference time domain algorithm in curvilinear, coordinates for solving three-dimensional open-region scattering problems
-
June(also see [6])
-
J. F. Lee, R. Mittra and J. Joseph, “Finite difference time domain algorithm in curvilinear, coordinates for solving three-dimensional open-region scattering problems,” 1991 Digest—Antennas and Propagation Society Symp., pp. 1766–1769, June 1991 (also see [6]).
-
(1991)
1991 Digest—Antennas and Propagation Society Symp.
, pp. 1766-1769
-
-
Lee, J.F.1
Mittra, R.2
Joseph, J.3
-
20
-
-
0026821189
-
Modeling three-dimensional waveguide discontinuities using FDTD algorithm in curvilinear coordinate system
-
Feb.
-
J. F. Lee, R. Palandech and R. Mittra, “Modeling three-dimensional waveguide discontinuities using FDTD algorithm in curvilinear coordinate system,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 346–352, Feb. 1992.
-
(1992)
IEEE Trans. Microwave Theory Tech
, vol.40
, pp. 346-352
-
-
Lee, J.F.1
Palandech, R.2
Mittra, R.3
-
21
-
-
0026852574
-
A study of the northogonal FDTD method vs. the conventional FDTD technique for computing resonant frequencies of cylindrical cavities
-
Apr.
-
P. H. Harms, J. F. Lee and R. Mittra, “A study of the northogonal FDTD method vs. the conventional FDTD technique for computing resonant frequencies of cylindrical cavities,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 741–746, Apr. 1992.
-
(1992)
IEEE Trans. Microwave Theory Tech
, vol.40
, pp. 741-746
-
-
Harms, P.H.1
Lee, J.F.2
Mittra, R.3
-
22
-
-
0020943384
-
Finite-difference solution of Maxwell’s equations in generalized nonorthogonal coordinates
-
Dec.
-
R. Holland, “Finite-difference solution of Maxwell’s equations in generalized nonorthogonal coordinates,” IEEE Trans. Nuclear Science, vol. NS-30, pp. 4589–4591, Dec. 1983.
-
(1983)
IEEE Trans. Nuclear Science
, vol.NS-30
, pp. 4589-4591
-
-
Holland, R.1
|