-
1
-
-
0018433475
-
On the classification of underwater acoustic signals: An envinomentally adaptive approach
-
L. Deuser and D. Middleton, “On the classification of underwater acoustic signals: An envinomentally adaptive approach,” The Acoustic Society of America, vol. 65, pp. 438–443, 1979.
-
(1979)
The Acoustic Society of America
, vol.65
, pp. 438-443
-
-
Deuser, L.1
Middleton, D.2
-
2
-
-
0022234422
-
Automatic recognition of underwater transient signals-a review
-
C. H. Chen, “Automatic recognition of underwater transient signals-a review,” in Proc. ICASSP, pp. 1270–1272, 1985.
-
(1985)
Proc. ICASSP
, pp. 1270-1272
-
-
Chen, C.H.1
-
3
-
-
84942211725
-
Underwater Acoustic Signal Processing
-
Special Issue Jan.
-
Special Issue, “Underwater Acoustic Signal Processing,” IEEE J. Ocean. Eng., p. 2–278, Jan. 1987.
-
(1987)
IEEE J. Ocean. Eng.
, pp. 2-278
-
-
-
6
-
-
84936526690
-
Review of neural networks for speech recognition
-
R. P. Lippmann, “Review of neural networks for speech recognition,” Neural Computation, vol. 1, pp. 1–38, 1989.
-
(1989)
Neural Computation
, vol.1
, pp. 1-38
-
-
Lippmann, R.P.1
-
7
-
-
0024646069
-
Mapping neural networks onto message-passing multicomputers
-
Apr.
-
J. Ghosh and K. Hwang, “Mapping neural networks onto message-passing multicomputers,” J. Parallel and Distributed Computing, vol. 6, pp. 291–330, Apr. 1989.
-
(1989)
J. Parallel and Distributed Computing
, vol.6
, pp. 291-330
-
-
Ghosh, J.1
Hwang, K.2
-
8
-
-
0001896046
-
Practical characteristics of neural network and conventional pattern classifiers
-
K. Ng and R. P. Lippmann, “Practical characteristics of neural network and conventional pattern classifiers,” in Advances in Neural Information Processing Systems—III, pp. 970–976, 1991.
-
(1991)
Advances in Neural Information Processing Systems—III
, pp. 970-976
-
-
Ng, K.1
Lippmann, R.P.2
-
9
-
-
0000494466
-
Optimal brain damage
-
Y. L. Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances in Neural Information Processing Systems—II, pp. 598–605, 1990.
-
(1990)
Advances in Neural Information Processing Systems—II
, pp. 598-605
-
-
Cun, Y.L.1
Denker, J.S.2
Solla, S.A.3
-
11
-
-
0026140690
-
Optimized feature extraction and the bayes decision in feed-forward classifier networks
-
Apr.
-
D. Lowe and A. R. Webb, “Optimized feature extraction and the bayes decision in feed-forward classifier networks,” IEEE Trans. PAMI, vol. 13, pp. 355–364, Apr. 1991.
-
(1991)
IEEE Trans. PAMI
, vol.13
, pp. 355-364
-
-
Lowe, D.1
Webb, A.R.2
-
13
-
-
0000624304
-
Large automatic learning, rule extraction and generalization
-
J. Denker et al. “Large automatic learning, rule extraction and generalization,” Complex Systems, vol. 1, pp. 877–922, 1987.
-
(1987)
Complex Systems
, vol.1
, pp. 877-922
-
-
Denker, J.1
-
14
-
-
0025508916
-
A statistical approach to learning and generalization in layered neural networks
-
Oct.
-
E. Levin, N. Tishby, and S. A. Solla, “A statistical approach to learning and generalization in layered neural networks,” Proc. IEEE, vol. 78, pp. 1568–74, Oct. 1990.
-
(1990)
Proc. IEEE
, vol.78
, pp. 1568-1574
-
-
Levin, E.1
Tishby, N.2
Solla, S.A.3
-
15
-
-
0026289079
-
Note on generalization, regularization and architecture selection in nonlinear learning systems
-
J. E. Moody, “Note on generalization, regularization and architecture selection in nonlinear learning systems,” in IEEE Workshop Neural Networks for Signal Processing, pp. 1–10, 1991.
-
(1991)
IEEE Workshop Neural Networks for Signal Processing
, pp. 1-10
-
-
Moody, J.E.1
-
16
-
-
85023313859
-
Links between artificial neural networks and statistical pattern recognition
-
I. K. Sethi and A. Jain, Eds., Amsterdam: Elsevier Science
-
P. J. Werbos, “Links between artificial neural networks and statistical pattern recognition,” in I. K. Sethi and A. Jain, Eds., Artificial Neural Networks and Statistical Pattern Recognition. Amsterdam: Elsevier Science, 1991, pp. 11–32.
-
(1991)
Artificial Neural Networks and Statistical Pattern Recognition
, pp. 11-32
-
-
Werbos, P.J.1
-
17
-
-
84974761680
-
Processing of textured images using neural networks
-
I. K. Sethi and A. Jain, Ed. Amsterdam: Elsevier Science
-
S. Raudys and A. K. Jain, “Processing of textured images using neural networks,” in I. K. Sethi and A. Jain, Ed. Artificial Neural Networks and Statistical Pattern Recognition. Amsterdam: Elsevier Science, 1991, pp. 33–50.
-
(1991)
Artificial Neural Networks and Statistical Pattern Recognition
, pp. 33-50
-
-
Raudys, S.1
Jain, A.K.2
-
18
-
-
0026398538
-
Adaptive kernel classifiers for short-duration oceanic signals
-
Aug.
-
J. Ghosh et al., “Adaptive kernel classifiers for short-duration oceanic signals,” in IEEE Conf. Neural Networks for Ocean Engineering, pp. 41–48, Aug. 1991.
-
(1991)
IEEE Conf. Neural Networks for Ocean Engineering
, pp. 41-48
-
-
Ghosh, J.1
-
20
-
-
0026375443
-
The pi-sigma network: An efficient higherorder network for pattern classification and function approximation
-
July
-
Y. Shin and J. Ghosh, “The pi-sigma network: An efficient higherorder network for pattern classification and function approximation,” in Proc. Joint Conf. Neural Networks, pp. I: 13–18, July 1991.
-
(1991)
Proc. Joint Conf. Neural Networks
, pp. I:13-I:18
-
-
Shin, Y.1
Ghosh, J.2
-
21
-
-
0026371327
-
A hybrid neural network classifier of short duration acoustic signals
-
July
-
S. Beck, L. Deuser, R. Still, and J. Whiteley, “A hybrid neural network classifier of short duration acoustic signals,” in Proc. IJCNN, pp. 1:119-124, July 1991.
-
(1991)
Proc. IJCNN
, vol.1
, pp. 119-124
-
-
Beck, S.1
Deuser, L.2
Still, R.3
Whiteley, J.4
-
23
-
-
0023843391
-
Analysis of hidden units in a layered network trained to classify sonar targets
-
R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered network trained to classify sonar targets,” Neural Networks, pp. 1:75-89, 1988.
-
(1988)
Neural Networks
, vol.1
, pp. 75-89
-
-
Gorman, R.P.1
Sejnowski, T.J.2
-
24
-
-
2642680384
-
Probabilistic neural networks
-
J. Specht, “Probabilistic neural networks,” Neural Neworks, pp. 45–74, 1990.
-
(1990)
Neural Neworks
, pp. 45-74
-
-
Specht, J.1
-
26
-
-
0026375062
-
An episodal neural-net computing approach to the detection and interpretation of underwater acoustic transients
-
Y. H. Pao, T. L. Hemminger, D. J. Adams, and S. Clary, “An episodal neural-net computing approach to the detection and interpretation of underwater acoustic transients,” in Conf. Neural Networks for Ocean Eng., pp. 21–28, 1991.
-
(1991)
Conf. Neural Networks for Ocean Eng.
, pp. 21-28
-
-
Pao, Y.H.1
Hemminger, T.L.2
Adams, D.J.3
Clary, S.4
-
28
-
-
0342579078
-
Numerical to symbolical conversion for acoustic signal classification using a two-stage neural architecture
-
June
-
T. Lefebvre, J. M. Nicolas, and P. Degoul, “Numerical to symbolical conversion for acoustic signal classification using a two-stage neural architecture,” in Proc. Int. Neural Network Conf., pp. 119–122, June 1990.
-
(1990)
Proc. Int. Neural Network Conf.
, pp. 119-122
-
-
Lefebvre, T.1
Nicolas, J.M.2
Degoul, P.3
-
29
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the bias/variance dilemma,” Neural Computation, vol. 4, pp. 1–58, 1992.
-
(1992)
Neural Computation
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
30
-
-
0024883243
-
Optimal unsupervised learning in a singe-layer linear feedforward neural network
-
T. D. Sanger, “Optimal unsupervised learning in a singe-layer linear feedforward neural network,” Neural Networks, vol. 2, pp. 459–474, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 459-474
-
-
Sanger, T.D.1
-
32
-
-
0024771475
-
Pattern classification using neural networks
-
Nov.
-
R. P. Lippmann, “Pattern classification using neural networks,” IEEE Commun. Mag., pp. 47–64, Nov. 1989.
-
(1989)
IEEE Commun. Mag.
, pp. 47-64
-
-
Lippmann, R.P.1
-
33
-
-
0001896046
-
A comparative study of the practical characteristics of neural network and conventional pattern classifiers
-
K. Ng and R. P. Lippmann, “A comparative study of the practical characteristics of neural network and conventional pattern classifiers,” Advances in Neural Information Processing Systems—III, pp. 970–975, 1990.
-
(1990)
Advances in Neural Information Processing Systems—III
, pp. 970-975
-
-
Ng, K.1
Lippmann, R.P.2
-
34
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
D. S. Broomhead and D. Lowe, “Multivariable functional interpolation and adaptive networks,” Complex Systems, vol. 2, pp. 321–355, 1988.
-
(1988)
Complex Systems
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
35
-
-
0000672424
-
Fast learning in networks of locally-tuned processing units
-
J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned processing units,” Neural Computation, vol. 1, pp. 281–294, 1989.
-
(1989)
Neural Computation
, vol.1
, pp. 281-294
-
-
Moody, J.1
Darken, C.J.2
-
39
-
-
0003284920
-
Serial order: A parallel, distributed processing approach
-
J. L. Elman and D. E. Rumelhart, Eds., Hillsdale: Lawrence Erlbaum
-
M. I. Jordan, “Serial order: A parallel, distributed processing approach,” in J. L. Elman and D. E. Rumelhart, Eds., Advances in Connectionist Theory: Speech. Hillsdale: Lawrence Erlbaum, 1989.
-
(1989)
Advances in Connectionist Theory: Speech
-
-
Jordan, M.I.1
-
40
-
-
26444565569
-
Finding structure in time
-
J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179–211, 1990.
-
(1990)
Cognitive Science
, vol.14
, pp. 179-211
-
-
Elman, J.L.1
-
42
-
-
0025020623
-
A real time learning algorithm for recurrent analog neural networks
-
M. Sato, “A real time learning algorithm for recurrent analog neural networks,” Bio. Cybern., vol. 62, pp. 237–241, 1990.
-
(1990)
Bio. Cybern.
, vol.62
, pp. 237-241
-
-
Sato, M.1
-
43
-
-
0015142058
-
Polynomial theory of complex systems
-
Oct.
-
A. G. Ivakhnenko, “Polynomial theory of complex systems,” IEEE Trans. Syst. Man, Cybern., vol. 1, pp. 364–378, Oct. 1971.
-
(1971)
IEEE Trans. Syst. Man, Cybern.
, vol.1
, pp. 364-378
-
-
Ivakhnenko, A.G.1
-
45
-
-
0001683814
-
Layered neural networks with Gaussian hidden units as universal approximators
-
J. Kowalski, E. Hartman, and J. Keeler, “Layered neural networks with Gaussian hidden units as universal approximators,” Neural Computation, vol. 2, pp. 210–215, 1990.
-
(1990)
Neural Computation
, vol.2
, pp. 210-215
-
-
Kowalski, J.1
Hartman, E.2
Keeler, J.3
-
46
-
-
6344280206
-
Neural networks and radial basis functions in classifying static speech patterns
-
M. Niranjan and F. Fallside, “Neural networks and radial basis functions in classifying static speech patterns,” Tech. Rep. CUED/FINFENG/TR22, 1988.
-
(1988)
Tech. Rep. CUED/FINFENG/TR22
-
-
Niranjan, M.1
Fallside, F.2
-
48
-
-
0023513717
-
Learning, invariance, and generalizaiton in a high-order neural network
-
C. L. Giles and T. Maxwell, “Learning, invariance, and generalizaiton in a high-order neural network. Applied Optics, vol. 26, pp. 4972–4978, 1987.
-
(1987)
Applied Optics
, vol.26
, pp. 4972-4978
-
-
Giles, C.L.1
Maxwell, T.2
-
49
-
-
84942218264
-
The properties and implementation of the non-linear vector space connectionist model
-
Oct.
-
M. R. Lynch and P. J. Rayner, “The properties and implementation of the non-linear vector space connectionist model,” in Proc. First IEE Int. Conf. Artificial Neural Networks, pp. 184–190, Oct. 1989.
-
(1989)
Proc. First IEE Int. Conf. Artificial Neural Networks
, pp. 184-190
-
-
Lynch, M.R.1
Rayner, P.J.2
-
50
-
-
84942218265
-
Efficient higher-order networks for function approximation and classification
-
J. Ghosh and Y. Shin, “Efficient higher-order networks for function approximation and classification,” IEEE Trans. Neural Networks, 1992.
-
(1992)
IEEE Trans. Neural Networks
-
-
Ghosh, J.1
Shin, Y.2
-
51
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
52
-
-
0026993851
-
Evidence combination techniques for robust classification of short-duration oceanic signals
-
Apr.
-
J. Ghosh, S. Beck, and C. C. Chu, “Evidence combination techniques for robust classification of short-duration oceanic signals,” in SPIE Conf. Adaptive Learning Systems, SPIE Proc., vol. 1706, Apr. 1992.
-
(1992)
SPIE Conf. Adaptive Learning Systems, SPIE Proc.
, vol.1706
-
-
Ghosh, J.1
Beck, S.2
Chu, C.C.3
-
53
-
-
0026119582
-
Adaptive nearest neighbor classification
-
S. Geva and J. Sitte. “Adaptive nearest neighbor classification,” IEEE Trans. Neural Networks, vol. 2, pp. 318–322, 1991.
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, pp. 318-322
-
-
Geva, S.1
Sitte, J.2
-
55
-
-
0025490985
-
Networks for approximation and learning
-
Sept.
-
T. Poggio and F. Girosi, “Networks for approximation and learning,” Proc. IEEE, vol. 78, pp. 1481–1497, Sept. 1990.
-
(1990)
Proc. IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
56
-
-
0000106040
-
Universal approximation using radial basis function networks
-
J. Park and I. W. Sandberg, “Universal approximation using radial basis function networks,” Neural Computation. vol. 3, pp. 246–257, 1991.
-
(1991)
Neural Computation
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
57
-
-
0023515080
-
Counterpropagation networks
-
R. Hecht-Neilsen, “Counterpropagation networks,” Appl. Optics, vol. 26, pp. 4979–4984, 1987.
-
(1987)
Appl. Optics
, vol.26
, pp. 4979-4984
-
-
Hecht-Neilsen, R.1
-
58
-
-
0026279356
-
Efficient training procedures for adaptive kernel classifiers
-
IEEE Press
-
S. Chakravarthy, J. Ghosh, L. Deuser, and S. Beck, “Efficient training procedures for adaptive kernel classifiers,” in Neural Networks for Signal Processing, pp. 21–29, IEEE Press, 1991.
-
(1991)
Neural Networks for Signal Processing
, pp. 21-29
-
-
Chakravarthy, S.1
Ghosh, J.2
Deuser, L.3
Beck, S.4
-
61
-
-
0001595997
-
Neural network classifiers estimate bayesian a posteriori probabilities
-
M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate bayesian a posteriori probabilities,” Neural Computation, vol. 3, pp. 461–483, 1991.
-
(1991)
Neural Computation
, vol.3
, pp. 461-483
-
-
Richard, M.D.1
Lippmann, R.P.2
-
62
-
-
0025671510
-
A probablistic approach to the understanding and training of neural network classifiers
-
Apr.
-
H. Gish, “A probablistic approach to the understanding and training of neural network classifiers,” in Proc. Int. Conf. ASSP, pp. 1361–1364, Apr. 1990.
-
(1990)
Proc. Int. Conf. ASSP
, pp. 1361-1364
-
-
Gish, H.1
-
63
-
-
0037785620
-
Least squares learning and approximation of posterior probabilities on classification problems by neural network models
-
Feb.
-
P. A. Shoemaker, M. J. Carlin, R. L. Shimabukuro, and C. E. Priebe. “Least squares learning and approximation of posterior probabilities on classification problems by neural network models,” in Proc. 2nd Workshop Neural Networks, WNN-AIND91, pp. 187–196, Feb. 1991.
-
(1991)
Proc. 2nd Workshop Neural Networks, WNN-AIND91
, pp. 187-196
-
-
Shoemaker, P.A.1
Carlin, M.J.2
Shimabukuro, R.L.3
Priebe, C.E.4
-
65
-
-
0022823858
-
Probabilistic interpretation for MYCIN's uncertainty factors
-
L.N. Kanal and J. F. Lemmer, Eds., North-Holland
-
D. Heckerman, “Probabilistic interpretation for MYCIN's uncertainty factors,” in L.N. Kanal and J. F. Lemmer, Eds., Uncertainty in Artificial Intelligence. North-Holland, 1986, pp. 167–196.
-
(1986)
Uncertainty in Artificial Intelligence
, pp. 167-196
-
-
Heckerman, D.1
|