메뉴 건너뛰기




Volumn 17, Issue 4, 1992, Pages 351-363

A Neural Network Based Hybrid System for Detection, Characterization, and Classification of Short-Duration Oceanic Signals

Author keywords

evidence combination; feature extraction; Neural networks; passive sonar; pattern classification; short duration oceanic signals

Indexed keywords

INFORMATION THEORY; NEURAL NETWORKS; OCEANOGRAPHY; PATTERN RECOGNITION; RANDOM PROCESSES; SIGNAL PROCESSING; SPECTRUM ANALYSIS;

EID: 0026939766     PISSN: 03649059     EISSN: 15581691     Source Type: Journal    
DOI: 10.1109/48.180304     Document Type: Article
Times cited : (70)

References (65)
  • 1
    • 0018433475 scopus 로고
    • On the classification of underwater acoustic signals: An envinomentally adaptive approach
    • L. Deuser and D. Middleton, “On the classification of underwater acoustic signals: An envinomentally adaptive approach,” The Acoustic Society of America, vol. 65, pp. 438–443, 1979.
    • (1979) The Acoustic Society of America , vol.65 , pp. 438-443
    • Deuser, L.1    Middleton, D.2
  • 2
    • 0022234422 scopus 로고
    • Automatic recognition of underwater transient signals-a review
    • C. H. Chen, “Automatic recognition of underwater transient signals-a review,” in Proc. ICASSP, pp. 1270–1272, 1985.
    • (1985) Proc. ICASSP , pp. 1270-1272
    • Chen, C.H.1
  • 3
    • 84942211725 scopus 로고
    • Underwater Acoustic Signal Processing
    • Special Issue Jan.
    • Special Issue, “Underwater Acoustic Signal Processing,” IEEE J. Ocean. Eng., p. 2–278, Jan. 1987.
    • (1987) IEEE J. Ocean. Eng. , pp. 2-278
  • 6
    • 84936526690 scopus 로고
    • Review of neural networks for speech recognition
    • R. P. Lippmann, “Review of neural networks for speech recognition,” Neural Computation, vol. 1, pp. 1–38, 1989.
    • (1989) Neural Computation , vol.1 , pp. 1-38
    • Lippmann, R.P.1
  • 7
    • 0024646069 scopus 로고
    • Mapping neural networks onto message-passing multicomputers
    • Apr.
    • J. Ghosh and K. Hwang, “Mapping neural networks onto message-passing multicomputers,” J. Parallel and Distributed Computing, vol. 6, pp. 291–330, Apr. 1989.
    • (1989) J. Parallel and Distributed Computing , vol.6 , pp. 291-330
    • Ghosh, J.1    Hwang, K.2
  • 8
    • 0001896046 scopus 로고
    • Practical characteristics of neural network and conventional pattern classifiers
    • K. Ng and R. P. Lippmann, “Practical characteristics of neural network and conventional pattern classifiers,” in Advances in Neural Information Processing Systems—III, pp. 970–976, 1991.
    • (1991) Advances in Neural Information Processing Systems—III , pp. 970-976
    • Ng, K.1    Lippmann, R.P.2
  • 11
    • 0026140690 scopus 로고
    • Optimized feature extraction and the bayes decision in feed-forward classifier networks
    • Apr.
    • D. Lowe and A. R. Webb, “Optimized feature extraction and the bayes decision in feed-forward classifier networks,” IEEE Trans. PAMI, vol. 13, pp. 355–364, Apr. 1991.
    • (1991) IEEE Trans. PAMI , vol.13 , pp. 355-364
    • Lowe, D.1    Webb, A.R.2
  • 13
    • 0000624304 scopus 로고
    • Large automatic learning, rule extraction and generalization
    • J. Denker et al. “Large automatic learning, rule extraction and generalization,” Complex Systems, vol. 1, pp. 877–922, 1987.
    • (1987) Complex Systems , vol.1 , pp. 877-922
    • Denker, J.1
  • 14
    • 0025508916 scopus 로고
    • A statistical approach to learning and generalization in layered neural networks
    • Oct.
    • E. Levin, N. Tishby, and S. A. Solla, “A statistical approach to learning and generalization in layered neural networks,” Proc. IEEE, vol. 78, pp. 1568–74, Oct. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1568-1574
    • Levin, E.1    Tishby, N.2    Solla, S.A.3
  • 15
    • 0026289079 scopus 로고
    • Note on generalization, regularization and architecture selection in nonlinear learning systems
    • J. E. Moody, “Note on generalization, regularization and architecture selection in nonlinear learning systems,” in IEEE Workshop Neural Networks for Signal Processing, pp. 1–10, 1991.
    • (1991) IEEE Workshop Neural Networks for Signal Processing , pp. 1-10
    • Moody, J.E.1
  • 16
    • 85023313859 scopus 로고
    • Links between artificial neural networks and statistical pattern recognition
    • I. K. Sethi and A. Jain, Eds., Amsterdam: Elsevier Science
    • P. J. Werbos, “Links between artificial neural networks and statistical pattern recognition,” in I. K. Sethi and A. Jain, Eds., Artificial Neural Networks and Statistical Pattern Recognition. Amsterdam: Elsevier Science, 1991, pp. 11–32.
    • (1991) Artificial Neural Networks and Statistical Pattern Recognition , pp. 11-32
    • Werbos, P.J.1
  • 17
    • 84974761680 scopus 로고
    • Processing of textured images using neural networks
    • I. K. Sethi and A. Jain, Ed. Amsterdam: Elsevier Science
    • S. Raudys and A. K. Jain, “Processing of textured images using neural networks,” in I. K. Sethi and A. Jain, Ed. Artificial Neural Networks and Statistical Pattern Recognition. Amsterdam: Elsevier Science, 1991, pp. 33–50.
    • (1991) Artificial Neural Networks and Statistical Pattern Recognition , pp. 33-50
    • Raudys, S.1    Jain, A.K.2
  • 18
    • 0026398538 scopus 로고
    • Adaptive kernel classifiers for short-duration oceanic signals
    • Aug.
    • J. Ghosh et al., “Adaptive kernel classifiers for short-duration oceanic signals,” in IEEE Conf. Neural Networks for Ocean Engineering, pp. 41–48, Aug. 1991.
    • (1991) IEEE Conf. Neural Networks for Ocean Engineering , pp. 41-48
    • Ghosh, J.1
  • 19
    • 0343885820 scopus 로고
    • Impact of feature vector selection on static classification of acoustic transient signals
    • Aug.
    • J. Ghosh, L. Deuser, and S. Beck, “Impact of feature vector selection on static classification of acoustic transient signals,” in Government Neural Network Applications Workshop, Aug. 1990.
    • (1990) Government Neural Network Applications Workshop
    • Ghosh, J.1    Deuser, L.2    Beck, S.3
  • 20
    • 0026375443 scopus 로고
    • The pi-sigma network: An efficient higherorder network for pattern classification and function approximation
    • July
    • Y. Shin and J. Ghosh, “The pi-sigma network: An efficient higherorder network for pattern classification and function approximation,” in Proc. Joint Conf. Neural Networks, pp. I: 13–18, July 1991.
    • (1991) Proc. Joint Conf. Neural Networks , pp. I:13-I:18
    • Shin, Y.1    Ghosh, J.2
  • 21
    • 0026371327 scopus 로고
    • A hybrid neural network classifier of short duration acoustic signals
    • July
    • S. Beck, L. Deuser, R. Still, and J. Whiteley, “A hybrid neural network classifier of short duration acoustic signals,” in Proc. IJCNN, pp. 1:119-124, July 1991.
    • (1991) Proc. IJCNN , vol.1 , pp. 119-124
    • Beck, S.1    Deuser, L.2    Still, R.3    Whiteley, J.4
  • 23
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered network trained to classify sonar targets,” Neural Networks, pp. 1:75-89, 1988.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 24
    • 2642680384 scopus 로고
    • Probabilistic neural networks
    • J. Specht, “Probabilistic neural networks,” Neural Neworks, pp. 45–74, 1990.
    • (1990) Neural Neworks , pp. 45-74
    • Specht, J.1
  • 26
    • 0026375062 scopus 로고
    • An episodal neural-net computing approach to the detection and interpretation of underwater acoustic transients
    • Y. H. Pao, T. L. Hemminger, D. J. Adams, and S. Clary, “An episodal neural-net computing approach to the detection and interpretation of underwater acoustic transients,” in Conf. Neural Networks for Ocean Eng., pp. 21–28, 1991.
    • (1991) Conf. Neural Networks for Ocean Eng. , pp. 21-28
    • Pao, Y.H.1    Hemminger, T.L.2    Adams, D.J.3    Clary, S.4
  • 28
    • 0342579078 scopus 로고
    • Numerical to symbolical conversion for acoustic signal classification using a two-stage neural architecture
    • June
    • T. Lefebvre, J. M. Nicolas, and P. Degoul, “Numerical to symbolical conversion for acoustic signal classification using a two-stage neural architecture,” in Proc. Int. Neural Network Conf., pp. 119–122, June 1990.
    • (1990) Proc. Int. Neural Network Conf. , pp. 119-122
    • Lefebvre, T.1    Nicolas, J.M.2    Degoul, P.3
  • 29
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the bias/variance dilemma,” Neural Computation, vol. 4, pp. 1–58, 1992.
    • (1992) Neural Computation , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 30
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a singe-layer linear feedforward neural network
    • T. D. Sanger, “Optimal unsupervised learning in a singe-layer linear feedforward neural network,” Neural Networks, vol. 2, pp. 459–474, 1989.
    • (1989) Neural Networks , vol.2 , pp. 459-474
    • Sanger, T.D.1
  • 32
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • Nov.
    • R. P. Lippmann, “Pattern classification using neural networks,” IEEE Commun. Mag., pp. 47–64, Nov. 1989.
    • (1989) IEEE Commun. Mag. , pp. 47-64
    • Lippmann, R.P.1
  • 33
    • 0001896046 scopus 로고
    • A comparative study of the practical characteristics of neural network and conventional pattern classifiers
    • K. Ng and R. P. Lippmann, “A comparative study of the practical characteristics of neural network and conventional pattern classifiers,” Advances in Neural Information Processing Systems—III, pp. 970–975, 1990.
    • (1990) Advances in Neural Information Processing Systems—III , pp. 970-975
    • Ng, K.1    Lippmann, R.P.2
  • 34
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. S. Broomhead and D. Lowe, “Multivariable functional interpolation and adaptive networks,” Complex Systems, vol. 2, pp. 321–355, 1988.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 35
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned processing units,” Neural Computation, vol. 1, pp. 281–294, 1989.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 39
    • 0003284920 scopus 로고
    • Serial order: A parallel, distributed processing approach
    • J. L. Elman and D. E. Rumelhart, Eds., Hillsdale: Lawrence Erlbaum
    • M. I. Jordan, “Serial order: A parallel, distributed processing approach,” in J. L. Elman and D. E. Rumelhart, Eds., Advances in Connectionist Theory: Speech. Hillsdale: Lawrence Erlbaum, 1989.
    • (1989) Advances in Connectionist Theory: Speech
    • Jordan, M.I.1
  • 40
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179–211, 1990.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 42
    • 0025020623 scopus 로고
    • A real time learning algorithm for recurrent analog neural networks
    • M. Sato, “A real time learning algorithm for recurrent analog neural networks,” Bio. Cybern., vol. 62, pp. 237–241, 1990.
    • (1990) Bio. Cybern. , vol.62 , pp. 237-241
    • Sato, M.1
  • 43
    • 0015142058 scopus 로고
    • Polynomial theory of complex systems
    • Oct.
    • A. G. Ivakhnenko, “Polynomial theory of complex systems,” IEEE Trans. Syst. Man, Cybern., vol. 1, pp. 364–378, Oct. 1971.
    • (1971) IEEE Trans. Syst. Man, Cybern. , vol.1 , pp. 364-378
    • Ivakhnenko, A.G.1
  • 45
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximators
    • J. Kowalski, E. Hartman, and J. Keeler, “Layered neural networks with Gaussian hidden units as universal approximators,” Neural Computation, vol. 2, pp. 210–215, 1990.
    • (1990) Neural Computation , vol.2 , pp. 210-215
    • Kowalski, J.1    Hartman, E.2    Keeler, J.3
  • 46
    • 6344280206 scopus 로고
    • Neural networks and radial basis functions in classifying static speech patterns
    • M. Niranjan and F. Fallside, “Neural networks and radial basis functions in classifying static speech patterns,” Tech. Rep. CUED/FINFENG/TR22, 1988.
    • (1988) Tech. Rep. CUED/FINFENG/TR22
    • Niranjan, M.1    Fallside, F.2
  • 47
    • 0024123145 scopus 로고
    • Adding conscience to competitive learning
    • D. De Sieno, “Adding conscience to competitive learning,” in IEEE Annual Int. Conf. Neural Networks, pp. 1117–1124, 1988.
    • (1988) IEEE Annual Int. Conf. Neural Networks , pp. 1117-1124
    • deSieno, D.1
  • 48
    • 0023513717 scopus 로고
    • Learning, invariance, and generalizaiton in a high-order neural network
    • C. L. Giles and T. Maxwell, “Learning, invariance, and generalizaiton in a high-order neural network. Applied Optics, vol. 26, pp. 4972–4978, 1987.
    • (1987) Applied Optics , vol.26 , pp. 4972-4978
    • Giles, C.L.1    Maxwell, T.2
  • 49
    • 84942218264 scopus 로고
    • The properties and implementation of the non-linear vector space connectionist model
    • Oct.
    • M. R. Lynch and P. J. Rayner, “The properties and implementation of the non-linear vector space connectionist model,” in Proc. First IEE Int. Conf. Artificial Neural Networks, pp. 184–190, Oct. 1989.
    • (1989) Proc. First IEE Int. Conf. Artificial Neural Networks , pp. 184-190
    • Lynch, M.R.1    Rayner, P.J.2
  • 50
    • 84942218265 scopus 로고
    • Efficient higher-order networks for function approximation and classification
    • J. Ghosh and Y. Shin, “Efficient higher-order networks for function approximation and classification,” IEEE Trans. Neural Networks, 1992.
    • (1992) IEEE Trans. Neural Networks
    • Ghosh, J.1    Shin, Y.2
  • 51
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 52
    • 0026993851 scopus 로고
    • Evidence combination techniques for robust classification of short-duration oceanic signals
    • Apr.
    • J. Ghosh, S. Beck, and C. C. Chu, “Evidence combination techniques for robust classification of short-duration oceanic signals,” in SPIE Conf. Adaptive Learning Systems, SPIE Proc., vol. 1706, Apr. 1992.
    • (1992) SPIE Conf. Adaptive Learning Systems, SPIE Proc. , vol.1706
    • Ghosh, J.1    Beck, S.2    Chu, C.C.3
  • 53
    • 0026119582 scopus 로고
    • Adaptive nearest neighbor classification
    • S. Geva and J. Sitte. “Adaptive nearest neighbor classification,” IEEE Trans. Neural Networks, vol. 2, pp. 318–322, 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 318-322
    • Geva, S.1    Sitte, J.2
  • 54
    • 0024124738 scopus 로고
    • Multilayer feedforward potential function network
    • S. Lee and R. M. Kil, “Multilayer feedforward potential function network,” In Proc. Second Int. Conf. Neural Networks, pp. 161–171, 1988.
    • (1988) Proc. Second Int. Conf. Neural Networks , pp. 161-171
    • Lee, S.1    Kil, R.M.2
  • 55
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Sept.
    • T. Poggio and F. Girosi, “Networks for approximation and learning,” Proc. IEEE, vol. 78, pp. 1481–1497, Sept. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 56
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • J. Park and I. W. Sandberg, “Universal approximation using radial basis function networks,” Neural Computation. vol. 3, pp. 246–257, 1991.
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 57
    • 0023515080 scopus 로고
    • Counterpropagation networks
    • R. Hecht-Neilsen, “Counterpropagation networks,” Appl. Optics, vol. 26, pp. 4979–4984, 1987.
    • (1987) Appl. Optics , vol.26 , pp. 4979-4984
    • Hecht-Neilsen, R.1
  • 61
    • 0001595997 scopus 로고
    • Neural network classifiers estimate bayesian a posteriori probabilities
    • M. D. Richard and R. P. Lippmann, “Neural network classifiers estimate bayesian a posteriori probabilities,” Neural Computation, vol. 3, pp. 461–483, 1991.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 62
    • 0025671510 scopus 로고
    • A probablistic approach to the understanding and training of neural network classifiers
    • Apr.
    • H. Gish, “A probablistic approach to the understanding and training of neural network classifiers,” in Proc. Int. Conf. ASSP, pp. 1361–1364, Apr. 1990.
    • (1990) Proc. Int. Conf. ASSP , pp. 1361-1364
    • Gish, H.1
  • 63
    • 0037785620 scopus 로고
    • Least squares learning and approximation of posterior probabilities on classification problems by neural network models
    • Feb.
    • P. A. Shoemaker, M. J. Carlin, R. L. Shimabukuro, and C. E. Priebe. “Least squares learning and approximation of posterior probabilities on classification problems by neural network models,” in Proc. 2nd Workshop Neural Networks, WNN-AIND91, pp. 187–196, Feb. 1991.
    • (1991) Proc. 2nd Workshop Neural Networks, WNN-AIND91 , pp. 187-196
    • Shoemaker, P.A.1    Carlin, M.J.2    Shimabukuro, R.L.3    Priebe, C.E.4
  • 64
    • 0016722472 scopus 로고
    • A model of inexact reasoning in medicine
    • E. H. Shortcliffe and B. G. Buchanan, “A model of inexact reasoning in medicine,” Mathematical Biosciences, vol. 23, pp. 351–379, 1975.
    • (1975) Mathematical Biosciences , vol.23 , pp. 351-379
    • Shortcliffe, E.H.1    Buchanan, B.G.2
  • 65
    • 0022823858 scopus 로고
    • Probabilistic interpretation for MYCIN's uncertainty factors
    • L.N. Kanal and J. F. Lemmer, Eds., North-Holland
    • D. Heckerman, “Probabilistic interpretation for MYCIN's uncertainty factors,” in L.N. Kanal and J. F. Lemmer, Eds., Uncertainty in Artificial Intelligence. North-Holland, 1986, pp. 167–196.
    • (1986) Uncertainty in Artificial Intelligence , pp. 167-196
    • Heckerman, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.