-
1
-
-
0017004301
-
Synthesis of minimum roundoff noise fixed point digital filters
-
Sept.
-
C. T. Mullis and R. A. Roberts, “Synthesis of minimum roundoff noise fixed point digital filters,” IEEE Trans. Circuits Syst., vol. CAS-23, pp. 551–562, Sept. 1976.
-
(1976)
IEEE Trans. Circuits Syst.
, vol.CAS-23
, pp. 551-562
-
-
Mullis, C.T.1
Roberts, R.A.2
-
2
-
-
0017526751
-
Minimum uncorrelated unit noise in state-space digital filtering
-
Aug.
-
S. Y. Hwang, “Minimum uncorrelated unit noise in state-space digital filtering,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25, pp. 256–262, Aug. 1977.
-
(1977)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-25
, pp. 256-262
-
-
Hwang, S.Y.1
-
3
-
-
0022796735
-
Synthesis of 2-D state-space fixed-point digital filter structures with minimum roundoff noise
-
Oct.
-
W.-S. Lu and A. Antoniou, “Synthesis of 2-D state-space fixed-point digital filter structures with minimum roundoff noise,” IEEE Trans. Circuits Syst., vol. CAS-33, pp. 965–973, Oct. 1986.
-
(1986)
IEEE Trans. Circuits Syst.
, vol.CAS-33
, pp. 965-973
-
-
Lu, W.-S.1
Antoniou, A.2
-
4
-
-
0022757524
-
A unified study on the roundoff noise in 2-D state space digital filters
-
July
-
T. Lin, M. Kawamata, and T. Higuchi, “A unified study on the roundoff noise in 2-D state space digital filters,” IEEE Trans. Circuits Syst., vol. CAS-33, pp. 724–730, July 1986.
-
(1986)
IEEE Trans. Circuits Syst.
, vol.CAS-33
, pp. 724-730
-
-
Lin, T.1
Kawamata, M.2
Higuchi, T.3
-
5
-
-
0003792312
-
-
Englewood Cliffs, NJ: Prentice Hall
-
T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice Hall, 1980.
-
(1980)
Linear Systems
-
-
Kailath, T.1
-
6
-
-
0019533482
-
Principal component analysis in linear systems: Controllability, observability, and model reduction
-
Feb.
-
B. C. Moore, “Principal component analysis in linear systems: Controllability, observability, and model reduction,” IEEE Trans. Automat. Contr., vol. AC-26, pp. 17–32, Feb. 1981.
-
(1981)
IEEE Trans. Automat. Contr.
, vol.AC-26
, pp. 17-32
-
-
Moore, B.C.1
-
7
-
-
0023540328
-
Balanced approximation of two-dimensional and delay-differential systems
-
W.-S. Lu, E. B. Lee, and Q.-T. Zhang, “Balanced approximation of two-dimensional and delay-differential systems,” Int. J. Contr., vol. 46, pp. 2199–2218, 1987.
-
(1987)
Int. J. Contr.
, vol.46
, pp. 2199-2218
-
-
Lu, W.-S.1
Lee, E.B.2
Zhang, Q.-T.3
-
8
-
-
0022329667
-
Balanced approximation of digital FIR filter with linear phase characteristic
-
June
-
H. Kimura and Y. Honoki, “Balanced approximation of digital FIR filter with linear phase characteristic,” in Proc. Int. Symp. Circuits Syst., pp. 283–286, June 1985.
-
(1985)
Proc. Int. Symp. Circuits Syst.
, pp. 283-286
-
-
Kimura, H.1
Honoki, Y.2
-
9
-
-
0026237630
-
Design of two-dimensional digital filters using singular-value decomposition and balanced approximation method
-
Oct.
-
W.-S. Lu, H.-P. Wang, and A. Antoniou, “Design of two-dimensional digital filters using singular-value decomposition and balanced approximation method,” IEEE Trans. Signal Processing, vol. ASSP-39, pp. 2253–2262, Oct. 1991.
-
(1991)
IEEE Trans. Signal Processing
, vol.ASSP-39
, pp. 2253-2262
-
-
Lu, W.-S.1
Wang, H.-P.2
Antoniou, A.3
-
10
-
-
0000567621
-
Numerical solution of the stable non-negative definite Lyapunov equation
-
S. J. Hammarling, “Numerical solution of the stable non-negative definite Lyapunov equation,” IMA J. Numer. Anal., vol. 2, pp. 303–323, 1982.
-
(1982)
IMA J. Numer. Anal.
, vol.2
, pp. 303-323
-
-
Hammarling, S.J.1
-
11
-
-
0023288081
-
Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms
-
Feb.
-
A. J. Laub, M. T. Heath, C. C. Paige, and R. C. Ward, “Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms,” IEEE Trans. Automat. Contr., vol. AC-32, pp. 115–122, Feb. 1987.
-
(1987)
IEEE Trans. Automat. Contr.
, vol.AC-32
, pp. 115-122
-
-
Laub, A.J.1
Heath, M.T.2
Paige, C.C.3
Ward, R.C.4
-
12
-
-
0022288389
-
Synthesis of 2-D separable denominator digital filters with minimum roundoff noise and no overflow oscillations
-
June
-
M. Kawamata and T. Higuchi, “Synthesis of 2-D separable denominator digital filters with minimum roundoff noise and no overflow oscillations,” in Proc. Int. Symp. Circuits Syst., pp. 1087–1091, June 1985.
-
(1985)
Proc. Int. Symp. Circuits Syst.
, pp. 1087-1091
-
-
Kawamata, M.1
Higuchi, T.2
-
13
-
-
0025482287
-
An algorithm for model reduction of 2-D discrete time systems
-
Sept.
-
K. Premaratne, E. I. Jury, and M. Mansour, “An algorithm for model reduction of 2-D discrete time systems,” IEEE Trans. Circuits Syst., vol. 37, pp. 1116–1132, Sept. 1990.
-
(1990)
IEEE Trans. Circuits Syst.
, vol.37
, pp. 1116-1132
-
-
Premaratne, K.1
Jury, E.I.2
Mansour, M.3
-
15
-
-
0014834531
-
A numerical method for the evaluation of complex integrals
-
Aug.
-
K. J. Astrom, E. I. Jury, and R. G. Agniel, “A numerical method for the evaluation of complex integrals,” IEEE Trans. Automat. Contr., vol. AC-15, pp. 468–471, Aug. 1970.
-
(1970)
IEEE Trans. Automat. Contr.
, vol.AC-15
, pp. 468-471
-
-
Astrom, K.J.1
Jury, E.I.2
Agniel, R.G.3
-
17
-
-
0022659117
-
An algorithm for the computation of the transfer function matrix of two-dimensional systems
-
Feb.
-
B. G. Mertzios, “An algorithm for the computation of the transfer function matrix of two-dimensional systems,” J. Franklin Inst., vol. 321, pp. 73–80, Feb. 1986.
-
(1986)
J. Franklin Inst.
, vol.321
, pp. 73-80
-
-
Mertzios, B.G.1
-
18
-
-
0024054143
-
A generalized study on the synthesis of 2-D state-space digital filters with minimum roundoff noise
-
Aug.
-
T. Hinamoto, T. Hamanaka, and S. Maekawa, “A generalized study on the synthesis of 2-D state-space digital filters with minimum roundoff noise,” IEEE Trans. Circuits Syst., vol. CAS-35, pp. 1037–1042, Aug. 1988.
-
(1988)
IEEE Trans. Circuits Syst.
, vol.CAS-35
, pp. 1037-1042
-
-
Hinamoto, T.1
Hamanaka, T.2
Maekawa, S.3
-
19
-
-
0025491908
-
Synthesis of 2-D state-space digital filters with low sensitivity based on the Fornasini-Marchesini model
-
Sept.
-
T. Hinamoto, T. Hamanaka, and S. Maekawa, “Synthesis of 2-D state-space digital filters with low sensitivity based on the Fornasini-Marchesini model,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-38, pp. 1587–1594, Sept. 1990.
-
(1990)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-38
, pp. 1587-1594
-
-
Hinamoto, T.1
Hamanaka, T.2
Maekawa, S.3
|