-
1
-
-
0003983549
-
Theoretical Acoustics
-
New York: McGraw-Hill
-
P. M. Morse and K. U. Ingard, Theoretical Acoustics. New York: McGraw-Hill 1968.
-
-
-
Morse, P.M.1
Ingard, K.U.2
-
2
-
-
0024897188
-
Self-focusing in inhomogeneous media with time-reversal acoustic mirrors
-
M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self-focusing in inhomogeneous media with time-reversal acoustic mirrors,” Proc. IEEE Ultrason. Symp., 1989, pp. 681-686.
-
(1989)
Proc. IEEE Ultrason. Symp.
, pp. 681-686
-
-
Fink, M.1
Prada, C.2
Wu, F.3
Cassereau, D.4
-
3
-
-
85083147321
-
Experimental progress of ultrasonic time-reversal mirrors
-
F. Wu, C. Prada, and M. Fink, “Experimental progress of ultrasonic time-reversal mirrors,” Acoust. Imaging, 1991.
-
(1991)
Acoust. Imaging
-
-
Wu, F.1
Prada, C.2
Fink, M.3
-
4
-
-
0025740413
-
The iterative time-reversal mirror: A solution to self-focusing in the pulse echo mode
-
July
-
C. Prada, F. Wu, and M. Fink, “The iterative time-reversal mirror: A solution to self-focusing in the pulse echo mode,” J. Acoust. Soc. Am. July 1991.
-
(1991)
J. Acoust. Soc. Am.
-
-
Prada, C.1
Wu, F.2
Fink, M.3
-
5
-
-
0025577199
-
Limits of self-focusing using closed time-reversal cavities and mirrors - Theory and experiment
-
D. Cassereau, F. Wu, and M. Fink, “Limits of self-focusing using closed time-reversal cavities and mirrors - Theory and experiment,” in Proc. IEEE Ultrason. Symp., pp. 1613-1618, 1990.
-
(1990)
Proc. IEEE Ultrason. Symp.
, pp. 1613-1618
-
-
Cassereau, D.1
Wu, F.2
Fink, M.3
-
6
-
-
85083124659
-
Theoretical modelisation of time-reversal cavities, application to self-focusing in inhomogeneous media
-
D. Cassereau and M. Fink, “Theoretical modelisation of time-reversal cavities, application to self-focusing in inhomogeneous media,” Acoust. Imaging, 1991.
-
(1991)
Acoust. Imaging
-
-
Cassereau, D.1
Fink, M.2
-
7
-
-
0010881893
-
and E. Wolf, Principles of Optics
-
New York: Pergamon
-
M. Born and E. Wolf, Principles of Optics. New York: Pergamon, 1975.
-
-
-
Born, M.1
-
8
-
-
33747261555
-
Signal Analysis. New York
-
McGraw-Hill
-
A. Papoulis, Signal Analysis. New York: McGraw-Hill 1984.
-
-
-
Papoulis, A.1
-
9
-
-
0020098945
-
Holography and the inverse source problem
-
R. P. Porter and A. J. Devaney, “Holography and the inverse source problem”, J. Opt. Soc. Amer., vol. 72, pp. 327-330, 1982.
-
(1982)
J. Opt. Soc. Amer.
, vol.72
, pp. 327-330
-
-
Porter, R.P.1
Devaney, A.J.2
-
10
-
-
5844309752
-
Image formation with arbitrary holographic type surfaces
-
R. P. Porter, “Image formation with arbitrary holographic type surfaces,” Phys. Lett., vol. 29A, pp. 193-194, 1969.
-
(1969)
Phys. Lett.
, vol.29A
, pp. 193-194
-
-
Porter, R.P.1
-
11
-
-
0006297797
-
Diffracted-limited, scalar image formation with holograms of arbitrary shape
-
R. P. Porter, “Diffracted-limited, scalar image formation with holograms of arbitrary shape,”J. Opt. Soc. Amer., vol. 60, pp. 1051-1059, 1970.
-
(1970)
J. Opt. Soc. Amer.
, vol.60
, pp. 1051-1059
-
-
Porter, R.P.1
-
12
-
-
0020292999
-
Generalized holography and computational solutions to inverse source problems
-
R. P. Porter and A. J. Devaney, “Generalized holography and computational solutions to inverse source problems,” J. Opt. Soc. Amer., vol. 72, pp. 1707-1713, 1982.
-
(1982)
J. Opt. Soc. Amer.
, vol.72
, pp. 1707-1713
-
-
Porter, R.P.1
Devaney, A.J.2
-
13
-
-
0003917871
-
Wave Propagation in a Random Medium
-
New York: McGraw Hill
-
L. A. Chernov, Wave Propagation in a Random Medium. New York: McGraw Hill, 1960.
-
-
-
Chernov, L.A.1
-
14
-
-
84953660282
-
Wave propagation in a randomly inhomogeneous medium—Part 1
-
D. Mintzer, “Wave propagation in a randomly inhomogeneous medium—Part 1,”J. Acoust. Soc. Amer., vol. 25, pp. 922-927, 1953.
-
(1953)
J. Acoust. Soc. Amer.
, vol.25
, pp. 922-927
-
-
Mintzer, D.1
-
15
-
-
43149116470
-
Wave propagation in a randomly inhomogeneous medium—Part II
-
—, “Wave propagation in a randomly inhomogeneous medium—Part II,” J. Acoust. Soc. Amer., vol. 25, pp. 1107-1111, 1953.
-
(1953)
J. Acoust. Soc. Amer.
, vol.25
, pp. 1107-1111
-
-
-
16
-
-
35949008770
-
Self-consistent equations for variablevelocity three-dimensional inverse scattering
-
J. H. Rose and M. Cheney, “Self-consistent equations for variablevelocity three-dimensional inverse scattering,” Phys. Rev. Lett., vol. 59, pp. 954-957, 1987.
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 954-957
-
-
Rose, J.H.1
Cheney, M.2
-
17
-
-
0020102611
-
Theory of phase conjugation with weak scatterers
-
G. S. Agarwal and E. Wolf, “Theory of phase conjugation with weak scatterers,” J. Opt. Soc. Amer., vol. 72, pp. 321-326, 1982.
-
(1982)
J. Opt. Soc. Amer.
, vol.72
, pp. 321-326
-
-
Agarwal, G.S.1
Wolf, E.2
-
18
-
-
0020154935
-
Effect of backscattering in phase conjugation with weak scatterers
-
G. S. Agarwal, A. T. Friberg, and E. Wolf, “Effect of backscattering in phase conjugation with weak scatterers,” J. Opt. Soc. Am., vol. 72, pp. 861-863, 1982.
-
(1982)
J. Opt. Soc. Am.
, vol.72
, pp. 861-863
-
-
Agarwal, G.S.1
Friberg, A.T.2
Wolf, E.3
-
19
-
-
85043068731
-
Optimal focusing through aberrating media: A comparison between time-reversal mirror and time delay correction techniques
-
F. Wu, M. Fink, R. Mallart, J. L. Thomas, N. Chakroun, D. Cassereau, and C. Prada, “Optimal focusing through aberrating media: A comparison between time-reversal mirror and time delay correction techniques,” Proc. IEEE Ultrason. Symp., 1991.
-
(1991)
Proc. IEEE Ultrason. Symp.
-
-
Wu, F.1
Fink, M.2
Mallart, R.3
Thomas, J.L.4
Chakroun, N.5
Cassereau, D.6
Prada, C.7
-
20
-
-
0026923552
-
Time-reversal of ultrasonic fields—Part II: Basic principles and experiments with time-reversal mirrors
-
F. Wu, J. L. Thomas, and M. Fink, “Time-reversal of ultrasonic fields—Part II: Basic principles and experiments with time-reversal mirrors,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., this issue, pp. 567-578.
-
IEEE Trans. Ultrason., Ferroelec., Freq. Contr., this issue
, pp. 567-578
-
-
Wu, F.1
Thomas, J.L.2
Fink, M.3
|