메뉴 건너뛰기




Volumn 14, Issue 9, 1992, Pages 910-927

Bayesian estimation of motion vector fields

Author keywords

2 D motion; Markov random fields; motion estimation; motion modeling; optical flow; Ravesian estimation; simulated and; stochastic relaxation

Indexed keywords

DECISION THEORY; ESTIMATION; PATTERN RECOGNITION; PROBABILITY; RANDOM PROCESSES; TIME VARYING SYSTEMS;

EID: 0026923444     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/34.161350     Document Type: Article
Times cited : (236)

References (35)
  • 1
    • 0003488827 scopus 로고
    • Measuring visual motion from image sequences
    • Ph.D. thesis, Univ. of Mass., May
    • P. Anandan, “Measuring visual motion from image sequences,” Ph.D. thesis, Univ. of Mass., May 1987.
    • (1987)
    • Anandan, P.1
  • 2
    • 0024057651 scopus 로고
    • Ill-posed problems in early vision
    • Aug.
    • M. Bertero, T. Poggio, and V. Torre, “Ill-posed problems in early vision,” Proc. IEEE, vol. 76, pp. 869–889, Aug. 1988.
    • (1988) Proc. IEEE , vol.76 , pp. 869-889
    • Bertero, M.1    Poggio, T.2    Torre, V.3
  • 3
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. Roy. Stat. Soc., vol. B 36, pp. 192–236, 1974.
    • (1974) J. Roy. Stat. Soc. , vol.B 36 , pp. 192-236
    • Besag, J.1
  • 4
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, “On the statistical analysis of dirty pictures,” J. Roy. Stat. Soc., vol. B 48, pp. 259–279, 1986.
    • (1986) J. Roy. Stat. Soc. , vol.B 48 , pp. 259-279
    • Besag, J.1
  • 6
    • 0019570836 scopus 로고
    • Fast filter transforms for image processing
    • P. Burt, “Fast filter transforms for image processing,” Comput. Vision Graphics Image Processing, vol. 16, pp. 20–51, 1981.
    • (1981) Comput. Vision Graphics Image Processing , vol.16 , pp. 20-51
    • Burt, P.1
  • 7
    • 0023123263 scopus 로고
    • Modeling and segmentation of noisy and textured images using Gibbs random fields
    • Jan.
    • H. Derin and H. Elliot, “Modeling and segmentation of noisy and textured images using Gibbs random fields,” IEEE Trans. Patt. Anal. Machine Intell, vol. PAMI-9, pp. 39–55, Jan. 1987.
    • (1987) IEEE Trans. Patt. Anal. Machine Intell , vol.PAMI-9 , pp. 39-55
    • Derin, H.1    Elliot, H.2
  • 8
    • 0022052153 scopus 로고
    • The sampling and reconstruction of timevarying imagery with application in video systems
    • Apr.
    • E. Dubois, “The sampling and reconstruction of timevarying imagery with application in video systems,” Proc. IEEE, vol. 73, pp. 502–522, Apr. 1985.
    • (1985) Proc. IEEE , vol.73 , pp. 502-522
    • Dubois, E.1
  • 9
    • 0024165218 scopus 로고
    • Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences
    • W. Enkelmann, “Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences,” Comput. Vision Graphics Image Processing, vol. 43, pp. 150–177, 1988.
    • (1988) Comput. Vision Graphics Image Processing , vol.43 , pp. 150-177
    • Enkelmann, W.1
  • 10
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Nov.
    • S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-6, 721–741, Nov. 1984.
    • (1984) IEEE Trans. Patt. Anal. Machine Intell. , vol.PAMI-6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 11
    • 0005083848 scopus 로고
    • Relaxing the brightness constancy assumption in computing optical flow
    • Artificial Intell. Lab., Cambridge June
    • M. Gennert and S. Negahdaripour, “Relaxing the brightness constancy assumption in computing optical flow,” Tech. Rep. 975, Mass. Inst. Technol. Artificial Intell. Lab., Cambridge, June 1987.
    • (1987) Tech. Rep. 975, Mass. Inst. Technol
    • Gennert, M.1    Negahdaripour, S.2
  • 12
    • 0039908221 scopus 로고
    • Hierarchical motion detection
    • Ph.D. thesis, Univ. of Mass., Feb.
    • F. Glazer, “Hierarchical motion detection,” Ph.D. thesis, Univ. of Mass., Feb. 1987.
    • (1987)
    • Glazer, F.1
  • 13
    • 0003328662 scopus 로고
    • The use of Markov random fields as models for texture
    • (E. A. Rosenfeld, Ed.). New York: Academic
    • M. Hassner and J. Sklansky, “The use of Markov random fields as models for texture.,” in Image Modeling (E. A. Rosenfeld, Ed.). New York: Academic, 1981, pp. 185–198.
    • (1981) Image Modeling , pp. 185-198
    • Hassner, M.1    Sklansky, J.2
  • 15
    • 0025550613 scopus 로고
    • Multimodal motion estimation and segmentation using Markov random fields
    • June
    • F. Heitz and P. Bouthemy, “Multimodal motion estimation and segmentation using Markov random fields,” in Proc. IEEE Int. Conf Patt. Recogn., June 1990, pp. 378–383.
    • (1990) Proc. IEEE Int. Conf Patt. Recogn , pp. 378-383
    • Heitz, F.1    Bouthemy, P.2
  • 16
    • 0021480075 scopus 로고
    • Computations underlying the measurement of visual motion
    • E. Hildreth, “Computations underlying the measurement of visual motion,” Artificial Intell., vol. 23, 309–354, 1984.
    • (1984) Artificial Intell. , vol.23 , pp. 309-354
    • Hildreth, E.1
  • 17
    • 0019698606 scopus 로고
    • Determining optical How
    • B. P. Horn and B. Schunck, “Determining optical How” Artificial Intell, vol. 17, pp. 185–203, 1981.
    • (1981) Artificial Intell , vol.17 , pp. 185-203
    • Horn, B.P.1    Schunck, B.2
  • 18
    • 0023981864 scopus 로고
    • Computing motion using analog and binary resistive networks
    • Mar.
    • J. Hutchinson, C. Koch, J. Luo, and C. Mead, “Computing motion using analog and binary resistive networks,” Comput., vol. 21, pp. 52–63, Mar. 1988.
    • (1988) Comput. , vol.21 , pp. 52-63
    • Hutchinson, J.1    Koch, C.2    Luo, J.3    Mead, C.4
  • 19
    • 0019654284 scopus 로고
    • Cubic convolution interpolation for digital image processing
    • Dec.
    • R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-29, pp. 1153–1160, Dec. 1981.
    • (1981) IEEE Trans. Acoust. Speech Signal Processing , vol.ASSP-29 , pp. 1153-1160
    • Keys, R.1
  • 20
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • May
    • S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi, “Optimization by simulated annealing,” Sci., vol. 220, pp. 671–680, May 1983.
    • (1983) Sci. , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.2    Vecchi, M.3
  • 21
    • 0023804709 scopus 로고
    • Estimation of image motion fields: Bayesian formulation and stochastic solution
    • Apr.
    • J. Konrad and E. Dubois, “Estimation of image motion fields: Bayesian formulation and stochastic solution,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Processing, Apr. 1988, 1072–1075.
    • (1988) Proc. IEEE Int. Conf. Acoust. Speech Signal Processing , pp. 1072-1075
    • Konrad, J.1    Dubois, E.2
  • 22
    • 0024175248 scopus 로고
    • Multigrid Bayesian estimation of image motion fields using stochastic relaxation
    • Dec.
    • J. Konrad and E. Dubois, “Multigrid Bayesian estimation of image motion fields using stochastic relaxation,” in Proc. IEEE Int. Conf. Comput. Vision, Dec. 1988, pp. 354–362.
    • (1988) Proc. IEEE Int. Conf. Comput. Vision , pp. 354-362
    • Konrad, J.1    Dubois, E.2
  • 23
    • 84947664781 scopus 로고
    • Motion-compensated interpolation for TV frame-rate conversion
    • Oct.
    • J. Konrad, “Motion-compensated interpolation for TV frame-rate conversion,” Tech. Rep. 26, INRS-Telecommunications, Oct. 1988.
    • (1988) Tech. Rep. 26, INRS-Telecommunications
    • Konrad, J.1
  • 24
    • 0345116025 scopus 로고
    • Bayesian estimation of motion fields from image sequences
    • Ph.D. thesis, Dept, of Elect. Eng., McGill Univ., Montreal, June
    • J. Konrad, “Bayesian estimation of motion fields from image sequences,” Ph.D. thesis, Dept, of Elect. Eng., McGill Univ., Montreal, June 1989.
    • (1989)
    • Konrad, J.1
  • 25
    • 0345547372 scopus 로고
    • Bayesian estimation of discontinuous motion in images using simulated annealing
    • June
    • J. Konrad and E. Dubois, “Bayesian estimation of discontinuous motion in images using simulated annealing,” in Proc. Conf. Vision Interface VI’89 June 1989, pp. 51–60.
    • (1989) Proc. Conf. Vision Interface VI’89 , pp. 51-60
    • Konrad, J.1    Dubois, E.2
  • 26
    • 0026205701 scopus 로고
    • Comparison of stochastic and deterministic solution methods in Bayesian estimation of 2-D motion
    • Aug.
    • J. Konrad and E. Dubois, “Comparison of stochastic and deterministic solution methods in Bayesian estimation of 2-D motion,” Image Vision Comput., vol. 9, pp. 215–228, Aug. 1991.
    • (1991) Image Vision Comput. , vol.9 , pp. 215-228
    • Konrad, J.1    Dubois, E.2
  • 27
    • 0003679958 scopus 로고
    • Probablistic solution of inverse problems
    • Ph.D. thesis, Mass. Inst. Technol., Cambridge, Sept.
    • J. Marroquin, “Probablistic solution of inverse problems,” Ph.D. thesis, Mass. Inst. Technol., Cambridge, Sept. 1985.
    • (1985)
    • Marroquin, J.1
  • 28
    • 4243691176 scopus 로고
    • Model-based motion estimation and its application to restoration and interpolation of motion pictures
    • Ph.D. thesis, Mass. Inst. Technol., Cambridge, Aug.
    • D. Martinez, “Model-based motion estimation and its application to restoration and interpolation of motion pictures,” Ph.D. thesis, Mass. Inst. Technol., Cambridge, Aug. 1986.
    • (1986)
    • Martinez, D.1
  • 30
    • 0023314362 scopus 로고
    • Scene segmentation from visual motion using global optimization
    • Mar.
    • D. Murray and B. Buxton, “Scene segmentation from visual motion using global optimization,” IEEE Trans. Patt. Anal. Machine Intell, vol. PAMI-9, pp. 220–228, Mar. 1987.
    • (1987) IEEE Trans. Patt. Anal. Machine Intell , vol.PAMI-9 , pp. 220-228
    • Murray, D.1    Buxton, B.2
  • 31
    • 84939359799 scopus 로고
    • An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences
    • Sept.
    • H.-H. Nagel and W. Enkelmann, “An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences,” IEEE Trans. Patt. Anal. Machine Intell, vol. PAMI-8, pp. 565–593, Sept. 1986.
    • (1986) IEEE Trans. Patt. Anal. Machine Intell , vol.PAMI-8 , pp. 565-593
    • Nagel, H.-H.1    Enkelmann, W.2
  • 32
    • 0003644137 scopus 로고
    • Applied Probability Models with Optimization Applications
    • San Francisco: Holden-Day
    • S. Ross, Applied Probability Models with Optimization Applications. San Francisco: Holden-Day, 1970.
    • (1970)
    • Ross, S.1
  • 33
    • 84859288247 scopus 로고
    • Motion segmentation and estimation
    • Ph.D. thesis, Mass. Inst. Technol., Cambridge, May
    • B. Schunck, “Motion segmentation and estimation,” Ph.D. thesis, Mass. Inst. Technol., Cambridge, May 1983.
    • (1983)
    • Schunck, B.1
  • 34
    • 0021602024 scopus 로고
    • Velocity estimation from image sequences with second order differential operators
    • July
    • O. Tretiak and L. Pastor, “Velocity estimation from image sequences with second order differential operators,” in Proc. IEEE Int. Conf Patt. Recogn., July 1984, pp. 16–19.
    • (1984) Proc. IEEE Int. Conf Patt. Recogn , pp. 16-19
    • Tretiak, O.1    Pastor, L.2
  • 35
    • 0015316602 scopus 로고
    • Two-dimensional discrete Markovian fields
    • Mar.
    • J. Woods, “Two-dimensional discrete Markovian fields,” IEEE Trans. Inform Theory, vol. IT-18, pp. 232–240, Mar. 1972.
    • (1972) IEEE Trans. Inform Theory , vol.IT-18 , pp. 232-240
    • Woods, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.