-
1
-
-
0022111023
-
Necessary and sufficient conditions for quadratic stabilizability of an uncertain system
-
B. R. Barmish, “Necessary and sufficient conditions for quadratic stabilizability of an uncertain system,” J. Optimiz. Theory Appl., vol. 46, no. 4, 399–408, 1985.
-
(1985)
J. Optimiz. Theory Appl
, vol.46
, Issue.4
, pp. 399-408
-
-
Barmish, B.R.1
-
2
-
-
84948611943
-
Guaranteed margins for LQG regulators
-
J. C. Doyle, “Guaranteed margins for LQG regulators,” IEEE Trans. Automat. Contr., vol. AC-26, no. 4, pp. 756–757, 1978.
-
(1978)
IEEE Trans. Automat. Contr.
, vol.AC-26
, Issue.4
, pp. 756-757
-
-
Doyle, J.C.1
-
3
-
-
0020203138
-
Analysis of feedback systems with structured uncertainties
-
Nov.
-
J. C. Doyle, “Analysis of feedback systems with structured uncertainties,” IEE Proc., Pt. D., vol. 129, no. 6, pp. 242–250, Nov. 1982.
-
(1982)
IEE Proc.
, vol.129
, Issue.6
, pp. 242-250
-
-
Doyle, J.C.1
-
5
-
-
0024715909
-
∝ control problems
-
J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space solutions to the standard H 2 and H x control problems,” IEEE Trans. Automat. Contr., vol. 34, no. 8, pp. 831–847, 1989.
-
(1989)
IEEE Trans. Automat. Contr.
, vol.34
, Issue.8
, pp. 831-847
-
-
Doyle, J.C.1
Glover, K.2
Khargonekar, P.P.3
Francis, B.A.4
-
7
-
-
0024085053
-
∝-norm bound and relations to risk sensitivity
-
K. Glover and J. C. Doyle, “State-space formulae for all stabilizing controllers that satisfy an H x - norm bound and relations to risk sensitivity,” Syst. Contr. Lett., vol. 11, pp. 167–172, 1988.
-
(1988)
Syst. Contr. Lett.
, vol.11
, pp. 167-172
-
-
Glover, K.1
Doyle, J.C.2
-
8
-
-
0025399146
-
∝ control theory
-
P. P. Khargonekar, I. R. Petersen, and K. Zhou, “Robust stabilization of uncertain linear systems: Quadratic stabiiizability and H x control theory,” IEEE Trans. Automat. Contr., vol. 35, no. 3, pp. 356–361, 1990.
-
(1990)
IEEE Trans. Automat. Contr.
, vol.35
, Issue.3
, pp. 356-361
-
-
Khargonekar, P.P.1
Petersen, I.R.2
Zhou, K.3
-
9
-
-
0021497411
-
Robust stabilizability for a class of transfer functions
-
H. Kimura, “Robust stabilizability for a class of transfer functions,” IEEE Trans. Automat. Contr., vol. AC-29, no. 9, pp.788-793, 1984.
-
(1984)
IEEE Trans. Automat. Contr.
, vol.AC-29
, Issue.9
, pp. 788-793
-
-
Kimura, H.1
-
10
-
-
0018519791
-
Guaranteed asymptotic stability for some linear systems with bounded uncertainties
-
G. Leitmann, “Guaranteed asymptotic stability for some linear systems with bounded uncertainties,” J. Dynam. Syst. Meas., Contr., vol. 101, pp. 212–216, 1979.
-
(1979)
J. Dynam. Syst. Meas., Contr.
, vol.101
, pp. 212-216
-
-
Leitmann, G.1
-
11
-
-
0024684279
-
x control design for systems with structured parameter uncertainty
-
A. N. Madiwale, W. M. Haddad, and D. S. Bernstein, “Robust H x control design for systems with structured parameter uncertainty,” Syst. Contr. Lett., vol. 12, pp. 393–407, 1989.
-
(1989)
Syst. Contr. Lett.
, vol.12
, pp. 393-407
-
-
Madiwale, A.N.1
Haddad, W.M.2
Bernstein, D.S.3
-
12
-
-
0025386095
-
Quadratic stability with real and complex perturbations
-
A. Packard and J. Doyle, “Quadratic stability with real and complex perturbations,” IEEE Trans. Automat. Contr., vol. 35, no. 2, pp. 198–201, 1990.
-
(1990)
IEEE Trans. Automat. Contr.
, vol.35
, Issue.2
, pp. 198-201
-
-
Packard, A.1
Doyle, J.2
-
13
-
-
0023349261
-
∝-optimization: A design method based on the algebraic Riccati equation
-
∝-optimization: A design method based on the algebraic Riccati equation,” IEEE Trans. Automat. Contr., vol. AC-32, no. 5, pp. 427–429, 1987.
-
(1987)
IEEE Trans. Automat. Contr.
, vol.AC-32
, Issue.5
, pp. 427-429
-
-
Petersen, I.R.1
-
14
-
-
0022757589
-
A Riccati equation approach to the stabilization of uncertain linear systems
-
I. R. Petersen and C. V. Hollot, “A Riccati equation approach to the stabilization of uncertain linear systems,” Automatica, vol. 22, no. 4, pp. 397–411, 1986.
-
(1986)
Automatica
, vol.22
, Issue.4
, pp. 397-411
-
-
Petersen, I.R.1
Hollot, C.V.2
-
15
-
-
0025237968
-
x output feedback control problems
-
M. Sampei, T. Mita, and M. Nakamichi, “An algebraic approach to H x output feedback control problems,” Syst. Contr. Lett., vol. 14, 13–24, 1990.
-
(1990)
Syst. Contr. Lett.
, vol.14
, pp. 13-24
-
-
Sampei, M.1
Mita, T.2
Nakamichi, M.3
-
16
-
-
0024941440
-
Robust stabilization and disturbance rejection for systems with structured uncertainty
-
Tampa, FL Dec.
-
R. J. Veillette, J. V. Medanic, and W. R. Perkins, “Robust stabilization and disturbance rejection for systems with structured uncertainty,” in Proc. 28th IEEE Conf. Decision Contr., Tampa, FL, Dec. 1989.
-
(1989)
Proc. 28th IEEE Conf. Decision Contr.
-
-
Veillette, R.J.1
Medanic, J.V.2
Perkins, W.R.3
-
17
-
-
0024612088
-
Robust stabilizability for linear systems with both parameter variation and unstructured uncertainty
-
K. Wei and R. K. Yedavalli, “Robust stabilizability for linear systems with both parameter variation and unstructured uncertainty,” IEEE Trans. Automat. Contr., vol. 34, no. 2, pp. 149–156, 1989.
-
(1989)
IEEE Trans. Automat. Contr.
, vol.34
, Issue.2
, pp. 149-156
-
-
Wei, K.1
Yedavalli, R.K.2
-
18
-
-
0025448138
-
x control for linear time-invariant systems with norm-bounded uncertainty in the input matrix
-
L. Xie and C. E. de Souza, “Robust H x control for linear time-invariant systems with norm-bounded uncertainty in the input matrix,” Syst. Contr. Lett., vol. 14, 389–396, 1990.
-
(1990)
Syst. Contr. Lett.
, vol.14
, pp. 389-396
-
-
Xie, L.1
de Souza, C.E.2
-
19
-
-
0026905635
-
x control for linear systems with norm-bounded time-varying uncertainty
-
L. Xie and C. E. de Souza, “Robust H x control for linear systems with norm-bounded time-varying uncertainty,” IEEE Trans. Automat. Contr., vol. 37, no. 6, 1992.
-
(1992)
IEEE Trans. Automat. Contr.
, vol.37
, Issue.6
-
-
Xie, L.1
de Souza, C.E.2
-
20
-
-
0019559036
-
Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses
-
G. Zames, “Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses,” IEEE Trans. Automat. Contr., vol. AC-26, no. 2, pp. 301–320, 1981.
-
(1981)
IEEE Trans. Automat. Contr.
, vol.AC-26
, Issue.2
, pp. 301-320
-
-
Zames, G.1
|