-
3
-
-
0016495091
-
Linear prediction: A tutorial review
-
Apr.
-
J. Makhoul, “Linear prediction: A tutorial review,” Proc. IEEE, vol. 63, pp. 561-580, Apr. 1975.
-
(1975)
Proc. IEEE
, vol.63
, pp. 561-580
-
-
Makhoul, J.1
-
7
-
-
0016333007
-
Computational aspects of maximum-likelihood estimation and reduction of sensitivity function calculations
-
N. K. Gupta and R. K. Mehra, “Computational aspects of maximum-likelihood estimation and reduction of sensitivity function calculations,” IEEE Trans. Automat. Contr., vol. AC-19, pp. 774-783, 1974.
-
(1974)
IEEE Trans. Automat. Contr.
, vol.AC-19
, pp. 774-783
-
-
Gupta, N.K.1
Mehra, R.K.2
-
8
-
-
0000070723
-
Efficient estimation of parameters in moving-average models
-
J. Durbin, “Efficient estimation of parameters in moving-average models,” Biometrika, vol. 46, pp. 306-316, 1959.
-
(1959)
Biometrika
, vol.46
, pp. 306-316
-
-
Durbin, J.1
-
9
-
-
0019076888
-
High performance spectral estimation a new ARMA method.
-
Oct.
-
J. Cadzow, “High performance spectral estimation a new ARMA method.” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 524-529, Oct. 1980.
-
(1980)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-28
, pp. 524-529
-
-
Cadzow, J.1
-
10
-
-
0000585353
-
Estimation of parameters in time series regression models
-
J. Durbin, “Estimation of parameters in time series regression models” Stat. Soc., vol. 22. pp. 139-153, 1960.
-
(1960)
Stat. Soc.
, vol.22
, pp. 139-153
-
-
Durbin, J.1
-
11
-
-
0348232201
-
An algorithm for pole-zero modeling and spectral analysis
-
June
-
R. Kumaresan, L. L. Scharf, and A. K. Shaw, “An algorithm for pole-zero modeling and spectral analysis,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 637-640, June 1986.
-
(1986)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-34
, pp. 637-640
-
-
Kumaresan, R.1
Scharf, L.L.2
Shaw, A.K.3
-
12
-
-
0022796219
-
Exact maximum likelihood parameter estimation of superimposed signals in noise
-
Oct.
-
Y. Bresler and A. Macovski, “Exact maximum likelihood parameter estimation of superimposed signals in noise,” IEEE Trans. Acoust., Speech, Signal Processing, vol, ASSP-34, pp. 1081-1089, Oct. 1986.
-
(1986)
IEEE Trans. Acoust., Speech, Signal Processing
, vol.ASSP-34
, pp. 1081-1089
-
-
Bresler, Y.1
Macovski, A.2
-
13
-
-
0015587701
-
Optimal least squares time-domain synthesis of recursive digital filters
-
Feb.
-
A. G. Evans and R. Fischl, “Optimal least squares time-domain synthesis of recursive digital filters,” IEEE Trans. Audio Electroacoust., vol. AU-21, pp. 61-65, Feb. 1973.
-
(1973)
IEEE Trans. Audio Electroacoust.
, vol.AU-21
, pp. 61-65
-
-
Evans, A.G.1
Fischl, R.2
-
14
-
-
0026105394
-
Exact equivalence of the Steiglitz-McBride iteration and IQML
-
Feb.
-
J. H. McClellan and D. Lee, “Exact equivalence of the Steiglitz-McBride iteration and IQML,” IEEE Trans. Signal Processing, vol. 39, pp. 509-512, Feb. 1991.
-
(1991)
IEEE Trans. Signal Processing
, vol.39
, pp. 509-512
-
-
McClellan, J.H.1
Lee, D.2
-
15
-
-
84892149890
-
A technique for the identification of linear systems
-
Oct.
-
K. Steiglitz and L. E. McBride, “A technique for the identification of linear systems,” IEEE Trans. Automat. Contr., vol. AC-10, pp. 461-464, Oct. 1965.
-
(1965)
IEEE Trans. Automat. Contr.
, vol.AC-10
, pp. 461-464
-
-
Steiglitz, K.1
McBride, L.E.2
-
16
-
-
84855940605
-
Subspace signal processing in structured noise
-
Ph.D. dissertation, Univ. Colorado, Boulder, CO
-
R. T. Behrens, “Subspace signal processing in structured noise,” Ph.D. dissertation, Univ. Colorado, Boulder, CO, 1990.
-
(1990)
-
-
Behrens, R.T.1
-
18
-
-
0024137947
-
Maximum likelihood estimation of exponential signals in noise using a Newton algorithm
-
(Minneapolis, MN), Aug.
-
D. Starer and A. Nehorai, “Maximum likelihood estimation of exponential signals in noise using a Newton algorithm,” in Proc. IEEE ASSP Workshop Spectral Estimation Modeling (Minneapolis, MN), Aug. 1988, pp. 240-245.
-
(1988)
Proc. IEEE ASSP Workshop Spectral Estimation Modeling
, pp. 240-245
-
-
Starer, D.1
Nehorai, A.2
|