메뉴 건너뛰기




Volumn 39, Issue 7, 1992, Pages 453-474

Fast Learning Algorithms for Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; OPTIMIZATION;

EID: 0026898850     PISSN: 10577130     EISSN: None     Source Type: Journal    
DOI: 10.1109/82.160170     Document Type: Article
Times cited : (89)

References (30)
  • 1
    • 0025488663 scopus 로고
    • 30 Years of adaptive neural networks: Perceptron, madaline, and backpropagation
    • Sept.
    • B. Widrow and M. A. Lehr, “30 Years of adaptive neural networks: Perceptron, madaline, and backpropagation,” Proc. IEEE, vol. 78, pp. 1415–1442, Sept. 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 2
    • 0003529238 scopus 로고
    • Beyond Regression: New tools for prediction and analysis in behavioral sciences
    • Harvard Univ., Cambridge, MA, Aug.
    • P. Werbos, “Beyond Regression: New tools for prediction and analysis in behavioral sciences,” Ph.D. dissertation, Harvard Univ., Cambridge, MA, Aug. 1974.
    • (1974) Ph.D. dissertation
    • Werbos, P.1
  • 4
    • 29444452108 scopus 로고
    • Optimal learning in neural network memories
    • L. F. Abbott and T. B. Kepler, “Optimal learning in neural network memories,” J. Physics A, vol. 22, pp. L711-L717, 1989.
    • (1989) J. Physics A , vol.22 , pp. L711-L717
    • Abbott, L.F.1    Kepler, T.B.2
  • 5
    • 0000759079 scopus 로고
    • The AdaTron: An adaptive perceptron algorithm
    • J. K. Anlauf and M. Biehl, “The AdaTron: An adaptive perceptron algorithm,” Europhysics Lett., vol. 10, pp. 687–692, 1989.
    • (1989) Europhysics Lett. , vol.10 , pp. 687-692
    • Anlauf, J.K.1    Biehl, M.2
  • 6
    • 0024137490 scopus 로고
    • Increased rate of convergence through learning rate adaptation
    • R. A. Jacobs, “Increased rate of convergence through learning rate adaptation,” Neural Networks, vol. 1, pp. 295–307, 1988.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 7
    • 0001694484 scopus 로고
    • Acceleration techniques for the backpropagation algorithm
    • L. B. Almeida and C. J. Wellekens, Eds. New York: Springer-Verlag
    • F. M. Silva and L. B. Almeida, “Acceleration techniques for the backpropagation algorithm,” in Proc. EURASIP Workshop on Neural Networks, L. B. Almeida and C. J. Wellekens, Eds. New York: Springer-Verlag, 1990.
    • (1990) Proc. EURASIP Workshop on Neural Networks
    • Silva, F.M.1    Almeida, L.B.2
  • 8
    • 0001209372 scopus 로고
    • Accelerated backpropagation learning: Two optimization methods
    • R. Battiti, “Accelerated backpropagation learning: Two optimization methods,” Complex Systems, vol. 3, pp. 331–342, 1989.
    • (1989) Complex Systems , vol.3 , pp. 331-342
    • Battiti, R.1
  • 9
    • 34250094997 scopus 로고
    • Accelerating the convergence of the back-propagation method
    • T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alton, “Accelerating the convergence of the back-propagation method,” Bio. Cybem. vol. 59, pp. 257–263, 1988.
    • (1988) Bio. Cybem. , vol.59 , pp. 257-263
    • Vogl, T.P.1    Mangis, J.K.2    Rigler, A.K.3    Zink, W.T.4    Alton, D.L.5
  • 10
    • 0003000735 scopus 로고
    • Fast-learning variations on back-propagation: An empirical study
    • D. Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman, “Fast-learning variations on back-propagation: An empirical study,” in Proc. 1988 Connectionist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann, pp. 38–51, 1989.
    • (1989) Proc. 1988 Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 11
    • 0023602770 scopus 로고
    • Optimal algorithms for adaptive networks: Second order back propagation, second order direct propagation, and second order Hebbian learning
    • D. B. Parker, “Optimal algorithms for adaptive networks: Second order back propagation, second order direct propagation, and second order Hebbian learning,” in Proc. Int. Conf. Neural Networks, vol. II, pp. 593–600, 1987.
    • (1987) Proc. Int. Conf. Neural Networks , vol.2 , pp. 593-600
    • Parker, D.B.1
  • 12
    • 0024715766 scopus 로고
    • An adaptive least squares algorithm for the efficient training of artificial neural networks
    • S. Kollias and D. Anastassiou, “An adaptive least squares algorithm for the efficient training of artificial neural networks,” IEEE Trans. Circuits Syst., vol. 36, pp. 1092–1101, 1989.
    • (1989) IEEE Trans. Circuits Syst. , vol.36 , pp. 1092-1101
    • Kollias, S.1    Anastassiou, D.2
  • 13
    • 0002906163 scopus 로고
    • Improving the convergence of backpropagation learning with second order methods
    • D. Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann
    • S. Becker and Y. le Cun, “Improving the convergence of backpropagation learning with second order methods,” in Proc. 1988 Connectionist Models Summer School, D. Touretzky, G. Hinton, and T. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann, pp. 29–37, 1989.
    • (1989) Proc. 1988 Connectionist Models Summer School , pp. 29-37
    • Becker, S.1    le Cun, Y.2
  • 14
    • 0000221272 scopus 로고
    • Training multilayer perceptrons with extended Kalman filter
    • San Mateo, Morgan Kaufmann, CA
    • S. Singhal and L. Wu, “Training multilayer perceptrons with extended Kalman filter,” in Advances in Neural Information Processing. San Mateo, Morgan Kaufmann, CA: pp. 133–140, 1989.
    • (1989) Advances in Neural Information Processing , pp. 133-140
    • Singhal, S.1    Wu, L.2
  • 15
    • 0026727333 scopus 로고
    • A fast new algorithm for training feedforward neural networks
    • R. S. Scalero and N. Tepedelenlioglu, “A fast new algorithm for training feedforward neural networks,” IEEE Trans. Signal Processing, vol. 40, pp. 202–210, 1992.
    • (1992) IEEE Trans. Signal Processing , vol.40 , pp. 202-210
    • Scalero, R.S.1    Tepedelenlioglu, N.2
  • 17
    • 0003696212 scopus 로고
    • Artificial neural networks: Learning algorithms, performance evaluation, and applications
    • Univ. Toronto, Apr.
    • N. B. Karayiannis, “Artificial neural networks: Learning algorithms, performance evaluation, and applications,” Ph.D. dissertation, Univ. Toronto, Apr. 1991.
    • (1991) Ph.D. dissertation
    • Karayiannis, N.B.1
  • 19
    • 0348187998 scopus 로고
    • Efficient learning algorithms for single-layered neural networks
    • R. Eckmiller, G. Hartmann, and G. Hauske, Eds. North Holland: Elsevier Publishers
    • —, “Efficient learning algorithms for single-layered neural networks,” Parallel Processing in Neural Systems and Computers, R. Eckmiller, G. Hartmann, and G. Hauske, Eds. North Holland: Elsevier Publishers, pp. 173–176, 1990.
    • (1990) Parallel Processing in Neural Systems and Computers , pp. 173-176
  • 21
    • 0001336749 scopus 로고
    • Accelerated learning layered neural networks
    • S. A. Solla E. Levin, and M. Fleisher, “Accelerated learning layered neural networks,” Complex Systems, vol. 2, pp. 625–640, 1988.
    • (1988) Complex Systems , vol.2 , pp. 625-640
    • Solla, S.A.1    Levin, E.2    Fleisher, M.3
  • 22
    • 0002099561 scopus 로고
    • Supervised learning of probability distributions by neural networks
    • D. Z. Anderson, Ed. New York: American Institute of Physics
    • E. B. Baum and F. Wilczek, “Supervised learning of probability distributions by neural networks,” in Neural Information Processing Systems, D. Z. Anderson, Ed. New York: American Institute of Physics, pp. 52–61, 1988.
    • (1988) Neural Information Processing Systems , pp. 52-61
    • Baum, E.B.1    Wilczek, F.2
  • 23
    • 0001041635 scopus 로고
    • Learning algorithms and probability distributions in feed-forward and feed-back networks
    • J. J. Hopfield, “Learning algorithms and probability distributions in feed-forward and feed-back networks,” in Proc. National Academy of Sciences, USA, vol. 84, pp. 8429–8433, 1987.
    • (1987) Proc. National Academy of Sciences, USA , vol.84 , pp. 8429-8433
    • Hopfield, J.J.1
  • 24
    • 1842862363 scopus 로고
    • Fast learning algorithms for neural networks
    • T. Kohonen et. al., Eds. North Holland: Elsevier Publishers
    • N. B. Karayiannis and A. N. Venetsanopoulos, “Fast learning algorithms for neural networks,” in Artificial Neural Networks, T. Kohonen et. al., Eds. North Holland: Elsevier Publishers, pp. 1141–1144, 1991.
    • (1991) Artificial Neural Networks , pp. 1141-1144
    • Karayiannis, N.B.1    Venetsanopoulos, A.N.2
  • 25
    • 0025670892 scopus 로고
    • The multilayer perceptron as an approximation to Bayes optimal discriminant function
    • D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter, “The multilayer perceptron as an approximation to Bayes optimal discriminant function,” IEEE Trans. Neural Networks, vol. 1, pp. 296–298, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 296-298
    • Ruck, D.W.1    Rogers, S.K.2    Kabrisky, M.3    Oxley, M.E.4    Suter, B.W.5
  • 26
    • 36149029127 scopus 로고
    • On the dynamics of neural networks realizing associative memories of first and higher order
    • July
    • N. B. Karayiannis and A. N. Venetsanopoulos, “On the dynamics of neural networks realizing associative memories of first and higher order,” Network: Computation in Neural Systems, vol. 1, pp. 345–364, July 1990.
    • (1990) Network: Computation in Neural Systems , vol.1 , pp. 345-364
    • Karayiannis, N.B.1    Venetsanopoulos, A.N.2
  • 28
    • 0001109377 scopus 로고
    • Learning internal representations from gray-scale images: An example of extensional programming
    • G. W. Cottrell, P. Munro, and D. Zipser, “Learning internal representations from gray-scale images: An example of extensional programming,” in Proc. Ninth Annual Conf. Cognitive Science Society, pp. 462–473, 1987.
    • (1987) Proc. Ninth Annual Conf. Cognitive Science Society , pp. 462-473
    • Cottrell, G.W.1    Munro, P.2    Zipser, D.3
  • 29
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Boulard and Y. Kamp, “Auto-association by multilayer perceptrons and singular value decomposition,” Bio. Cybem., vol. 59, pp. 291–294, 1988.
    • (1988) Bio. Cybem. , vol.59 , pp. 291-294
    • Boulard, H.1    Kamp, Y.2
  • 30
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. Baldi and K. Hornik, “Neural networks and principal component analysis: Learning from examples without local minima,” Neural Networks, vol. 2, pp. 53–58, 1989.
    • (1989) Neural Networks , vol.2 , pp. 53-58
    • Baldi, P.1    Hornik, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.