메뉴 건너뛰기




Volumn 1, Issue 3, 1992, Pages 322-336

Methods for Choosing the Regularization Parameter and Estimating the Noise Variance in Image Restoration and Their Relation

Author keywords

[No Author keywords available]

Indexed keywords

NOISE, SPURIOUS SIGNAL;

EID: 0026898364     PISSN: 10577149     EISSN: 19410042     Source Type: Journal    
DOI: 10.1109/83.148606     Document Type: Article
Times cited : (432)

References (38)
  • 2
    • 0006602629 scopus 로고
    • Non-homogeneous image identification and restoration procedures
    • A. K. Katsaggelos, ed., Springer Verlag New York:
    • D. L. Angwin and H. Kaufman, “Non-homogeneous image identification and restoration procedures,” in Digital Image Restoration, A. K. Katsaggelos, ed., Springer Verlag New York: vol. 23, 1991.
    • (1991) Digital Image Restoration , vol.23
    • Angwin, D.L.1    Kaufman, H.2
  • 3
    • 34250263445 scopus 로고
    • ''Smoothing noisy data with spline functions
    • P. Craven and G. Wahba, ‘‘Smoothing noisy data with spline functions,” Numer. Math., vol. 31, pp. 377–403, 1975.
    • (1975) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 4
    • 0024928175 scopus 로고
    • ''Image reconstruction and restoration: Overview of common estimation problems
    • Dec.
    • G. Demoment, ‘‘Image reconstruction and restoration: Overview of common estimation problems,” IEEE Trans. Acoust. Speech Signal Processing, vol. 37, pp. 2024–2036, Dec. 1989.
    • (1989) IEEE Trans. Acoust. Speech Signal Processing , vol.37 , pp. 2024-2036
    • Demoment, G.1
  • 5
    • 0026142441 scopus 로고
    • Nonparametric fixed-interval smoothing with vector splines
    • Apr.
    • J. A. Fessler, ‘‘Nonparametric fixed-interval smoothing with vector splines,” IEEE Trans. Signal Processing, vol. 39, pp. 852–859, Apr. 1991.
    • (1991) IEEE Trans. Signal Processing , vol.39 , pp. 852-859
    • Fessler, J.A.1
  • 6
    • 0026374909 scopus 로고
    • Cross validation and other criteria for estimating the regularization parameter and the noise variance
    • Toronto, Canada,May
    • N. P. Galatsanos, and A. K. Katsaggelos ‘‘Cross validation and other criteria for estimating the regularization parameter and the noise variance,” in Proc. IEEE ICASSP, Toronto, Canada, May 1991, pp. 3021–3024.
    • (1991) Proc. IEEE ICASSP , pp. 3021
    • Galatsanos, N.P.1    Katsaggelos, A.K.2
  • 7
    • 84941543289 scopus 로고
    • The use of cross-validation and maximum-likelihood in regularized image restoration
    • Mar.
    • —, ‘‘The use of cross-validation and maximum-likelihood in regularized image restoration,” in Proc. Conf. Information Sciences and Systems, Mar. 20–22, 1991, pp. 459–464.
    • (1991) Proc. Conf. Information Sciences and Systems , pp. 20-22
  • 8
    • 0015431807 scopus 로고
    • On the asymptotic eigenvalue distribution of Toeplitz matrices
    • Nov.
    • R. M. Gray, ‘‘On the asymptotic eigenvalue distribution of Toeplitz matrices,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 725–730, Nov. 1972.
    • (1972) IEEE Trans. Inform. Theory , vol.IT-18 , pp. 725-730
    • Gray, R.M.1
  • 9
    • 32044449925 scopus 로고
    • ''Generalized cross-validation as a method for choosing a good ridge parameter
    • G. H. Golub, M. Heath, and G. Wahba, ‘‘Generalized cross-validation as a method for choosing a good ridge parameter,” Technometr., vol. 21, no. 2, pp. 215–223, 1979.
    • (1979) Technometr. , vol.21 , Issue.2 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 10
    • 0001173603 scopus 로고
    • ''Common structure of techniques for choosing smoothing parameters in regression problems
    • P. Hall and D. Titterington, ‘‘Common structure of techniques for choosing smoothing parameters in regression problems,” J. Roy. Stat. Soc. B, vol. 49, no. 2, pp. 184–198, 1987.
    • (1987) J. Roy. Stat. Soc. B , vol.49 , Issue.2 , pp. 184-198
    • Hall, P.1    Titterington, D.2
  • 11
    • 84942484786 scopus 로고
    • ''Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard, ‘‘Ridge regression: Biased estimation for nonorthogonal problems,” Technometr., vol. 12, no. 1, pp. 55–67, 1970.
    • (1970) Technometr. , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 12
    • 0015660455 scopus 로고
    • The application of constrained least squares estimation to image restoration by digital computer
    • Sept.
    • B. R. Hunt, ‘‘The application of constrained least squares estimation to image restoration by digital computer,’’ IEEE Trans. Comput., vol. 22, pp. 805–812, Sept. 1973.
    • (1973) IEEE Trans. Comput. , vol.22 , pp. 805-812
    • Hunt, B.R.1
  • 13
    • 84941543290 scopus 로고    scopus 로고
    • Simultaneous iterative image restoration and evaluation of the regularization parameter
    • M. G. Kang and A. K. Katsaggelos, ‘‘Simultaneous iterative image restoration and evaluation of the regularization parameter,” to be published.
    • to be published
    • Kang, M.G.1    Katsaggelos, A.K.2
  • 14
    • 0022249916 scopus 로고
    • ''A general formulation of constrained iterative image restoration, ” in
    • Mar.
    • A. Katsaggelos, J. Biemond, R. M. Mersereau, and R. W. Schafer, ‘‘A general formulation of constrained iterative image restoration,” in Proc. ICASSP-85, Mar. 1985, pp. 700–703.
    • (1985) Proc. ICASSP-85 , pp. 700-703
    • Katsaggelos, A.1    Biemond, J.2    Mersereau, R.M.3    Schafer, R.W.4
  • 15
    • 0024700910 scopus 로고
    • ''Iterative image restoration algorithms
    • July
    • A. K. Katsaggelos, ‘‘Iterative image restoration algorithms,” Opt. Eng., vol. 28, no. 7, pp. 735–748, July 1989.
    • (1989) Opt. Eng. , vol.28 , Issue.7 , pp. 735-748
    • Katsaggelos, A.K.1
  • 18
    • 0025463347 scopus 로고
    • Identification and restoration of noisy blurred images using the expectation-maximization algorithm
    • July
    • R. L. Lagendijk, J. Biemond, and D. E. Bokee, ‘‘Identification and restoration of noisy blurred images using the expectation-maximization algorithm,” IEEE Trans. Acoust. Speech Signal Processing, vol. 38, pp. 1180–1191, July 1990.
    • (1990) IEEE Trans. Acoust. Speech Signal Processing , vol.38 , pp. 1180-1191
    • Lagendijk, R.L.1    Biemond, J.2    Bokee, D.E.3
  • 19
    • 0025434487 scopus 로고
    • Image identification and restoration based on the expectation maximization algorithm
    • May
    • K. T. Lay and A. K. Katsaggelos, ‘‘Image identification and restoration based on the expectation maximization algorithm,” Opt. Eng., vol. 29, no. 5, pp. 436–445, May 1990.
    • (1990) Opt. Eng. , vol.29 , Issue.5 , pp. 436-445
    • Lay, K.T.1    Katsaggelos, A.K.2
  • 20
    • 0021819423 scopus 로고
    • A smoothness priors long AR model method for spectral estimation
    • Jan.
    • G. Kitagawa and W. Gersch, ‘‘A smoothness priors long AR model method for spectral estimation,” IEEE Trans. Autom. Contr., vol. AC-30, pp. 57–65, Jan. 1985.
    • (1985) IEEE Trans. Autom. Contr. , vol.AC-30 , pp. 57-65
    • Kitagawa, G.1    Gersch, W.2
  • 21
    • 0025388423 scopus 로고
    • A fast parallel algorithm for blind estimation of noise variance
    • Feb.
    • P. Meer, J. Jolion, and A. Rosenfeld, ‘‘A fast parallel algorithm for blind estimation of noise variance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, pp. 216–222, Feb. 1990.
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell. , vol.12 , pp. 216-222
    • Meer, P.1    Jolion, J.2    Rosenfeld, A.3
  • 22
    • 33845606053 scopus 로고
    • Confidence intervals for smoothing splines
    • D. Nychka, ‘‘Confidence intervals for smoothing splines,” J. Amer. Stat. Assoc., vol. 83, pp. 1134–1143, 1988.
    • (1988) J. Amer. Stat. Assoc. , vol.83 , pp. 1134-1143
    • Nychka, D.1
  • 23
    • 0025434488 scopus 로고
    • Optimal estimation of the regularization parameters and stabilizing functional for regularized image restoration
    • May
    • S. J. Reeves and R. M. Mersereau, ‘‘Optimal estimation of the regularization parameters and stabilizing functional for regularized image restoration,” Opt. Eng., vol. 29, pp. 446–454, May 1990.
    • (1990) Opt. Eng. , vol.29 , pp. 446-454
    • Reeves, S.J.1    Mersereau, R.M.2
  • 24
    • 84918675112 scopus 로고
    • A cross-validation approach to image restoration and blur identification
    • S. J. Reeves, “A cross-validation approach to image restoration and blur identification,” Ph.D. dissertation, Inst. 1990.
    • (1990) Ph.D. dissertation, Inst
    • Reeves, S.J.1
  • 25
    • 0039644181 scopus 로고
    • Choice of smoothing parameter in deconvolution problems
    • J. S. Maron, ed. Providence, RI: American Math Soc.
    • J. A. Rice, “Choice of smoothing parameter in deconvolution problems,” in Contemporary Mathematics, vol. 59, J. S. Maron, ed. Providence, RI: American Math Soc., 1986.
    • (1986) Contemporary Mathematics , vol.59
    • Rice, J.A.1
  • 26
    • 0043253299 scopus 로고
    • Linear image restoration: An analytical study
    • Tech. Rep. 88-VS-May-1988, Dept, of ECE, The John Hopkins Univ., Balti-more, MD, May
    • V. Solo, “Linear image restoration: An analytical study,” Tech. Rep. 88-VS-May-1988, Dept, of ECE, The John Hopkins Univ., Balti-more, MD, May 1988.
    • (1988) Tech. Rep
    • Solo, V.1
  • 27
    • 0000629975 scopus 로고
    • Cross validatory choice and assesment of statistical predictions
    • Series B
    • M. Stone, “Cross validatory choice and assesment of statistical predictions,” J. Roy. Stattist. Soc., Series B, vol. 36, pp. 111–147, 1974.
    • (1974) J. Roy. Stattist. Soc. , vol.36 , pp. 111-147
    • Stone, M.1
  • 28
    • 84857304821 scopus 로고
    • Identification of image and blur parameters for the restoration of noncausal blurs
    • Aug.
    • A. M. Tekalp, H. Kaufman, and J. W. Woods, ‘‘Identification of image and blur parameters for the restoration of noncausal blurs,” IEEE Trans. Acoust. Speech Signal Processing, vol. 34, pp. 963–972, Aug. 1986.
    • (1986) IEEE Trans. Acoust. Speech Signal Processing , vol.34 , pp. 963-972
    • Tekalp, A.M.1    Kaufman, H.2    Woods, J.W.3
  • 29
    • 0024054564 scopus 로고
    • On statistical identification of a class of linear phase space-invariant blurs using non-minimum phase ARM A models
    • Aug.
    • A. M. Tekalp and H. Kaufman, “On statistical identification of a class of linear phase space-invariant blurs using non-minimum phase ARM A models,” IEEE Trans. Acoust. Speech Signal Processing, vol. 36, pp. 1360–1363, Aug. 1988.
    • (1988) IEEE Trans. Acoust. Speech Signal Processing , vol.36 , pp. 1360-1363
    • Tekalp, A.M.1    Kaufman, H.2
  • 31
    • 0026139576 scopus 로고
    • A study of methods of choosing the smoothing parameter in image restoration by regularization
    • Apr.
    • A. M. Thompson, J. C. Brown, J. W. Kay, and D. M. Titterington, “A study of methods of choosing the smoothing parameter in image restoration by regularization,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 13, no. 4, pp. 326–339, Apr. 1991.
    • (1991) IEEE Trans. Pattern Analy. Mach. Intell. , vol.13 , Issue.4 , pp. 326-339
    • Thompson, A.M.1    Brown, J.C.2    Kay, J.W.3    Titterington, D.M.4
  • 33
    • 0020705158 scopus 로고
    • Convergence criteria for iterative restoration methods
    • Feb.
    • H. J. Trussel, “Convergence criteria for iterative restoration methods,” IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-31, pp. 129–136, Feb. 1983.
    • (1983) IEEE Trans. Acoust. Speech Signal Processing , vol.ASSP-31 , pp. 129-136
    • Trussel, H.J.1
  • 35
    • 0000544453 scopus 로고
    • Practical approximate solutions to linear operator equations when the data are noisy
    • Sept.
    • G. Wahba, “Practical approximate solutions to linear operator equations when the data are noisy,” SIAM, J. Numer. Anal., vol. 14, pp. 651–667, Sept. 1977.
    • (1977) SIAM, J. Numer. Anal. , vol.14 , pp. 651-667
    • Wahba, G.1
  • 36
    • 0000939344 scopus 로고
    • Bayesian 'confidence intervals’ for the cross-validated smoothing splines
    • —, “Bayesian ‘confidence intervals’ for the cross-validated smoothing splines,” J. Roy. Stat. Soc. B, vol. 45, pp. 133–150, 1983.
    • (1983) J. Roy. Stat. Soc. B , vol.45 , pp. 133-150
  • 37
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
    • —, “A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem,” Annals Statist., vol. 13, no. 4, pp. 1378–1402, 1985.
    • (1985) Annals Statist , vol.13 , Issue.4 , pp. 1378-1402
  • 38
    • 0003466536 scopus 로고
    • Spline models for observational data
    • presented at SIAM-59, Philadelphia, PA
    • —, “Spline models for observational data,” presented at SIAM-59, Philadelphia, PA, 1990.
    • (1990)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.