메뉴 건너뛰기




Volumn 3, Issue 2, 1992, Pages 260-271

Information Geometry of Boltzmann Machines

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; MATHEMATICAL TECHNIQUES - GEOMETRY; PROBABILITY - RANDOM PROCESSES;

EID: 0026835133     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.125867     Document Type: Article
Times cited : (170)

References (23)
  • 2
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for Boltzmann machines,” Cognitive Science, vol. 9, pp. 147–169, 1985.
    • (1985) Cognitive Science , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 4
    • 0000344740 scopus 로고
    • Differential geometry of curved exponential families—Curvatures and information loss
    • S. Amari, “Differential geometry of curved exponential families—Curvatures and information loss,” Annals of Statistics, vol. 10, no. 2, pp. 357–385, 1982.
    • (1982) Annals of Statistics , vol.10 , Issue.2 , pp. 357-385
    • Amari, S.1
  • 5
    • 0003355631 scopus 로고
    • Differential-Geometrical Methods in Statistics &lpar
    • ’. New York: Springer
    • S. Amari, Differential-Geometrical Methods in Statistics ‘ Springer Lecture Notes in Statistics vol. 28’. New York: Springer, 1985.
    • (1985) Springer Lecture Notes in Statistics , vol.28
    • Amari, S.1
  • 6
    • 4243592137 scopus 로고
    • Differential geometry of smooth families of probability distributions
    • METR 82-7, Univ. Tokyo
    • H. Nagaoka and S. Amari, “Differential geometry of smooth families of probability distributions,” METR 82-7, Univ. Tokyo, 1982.
    • (1982)
    • Nagaoka, H.1    Amari, S.2
  • 7
    • 84941538115 scopus 로고
    • Differential Geometry in Statistical Inferences ‘IMS Lecture Notes Monograph Series, ’. IMS CA: Hayward
    • S. Amari, O. E. Barndorff-Hielsen, R. E. Kass, S. L. Lauritzen, and C. R. Rao, Differential Geometry in Statistical Inferences ‘IMS Lecture Notes Monograph Series, vol. 10’. IMS CA: Hayward, 1987.
    • (1987) , vol.10
    • Amari, S.1    Barndorff-Hielsen, O.E.2    Kass, R.E.3    Lauritzen, S.L.4    Rao, C.R.5
  • 9
    • 0000143473 scopus 로고
    • Geometrical theory of higher-order asymptotics of test, interval estimator and conditional inference
    • M. Kumon and S. Amari, “Geometrical theory of higher-order asymptotics of test, interval estimator and conditional inference,” in Proc. R. Soc. London, A387, pp. 429–458, 1983.
    • (1983) Proc. R. Soc. London , vol.A387 , pp. 429-458
    • Kumon, M.1    Amari, S.2
  • 10
    • 0000460064 scopus 로고
    • Estimation in the presence of infinitely many nuisance parameters—Geometry of estimating functions
    • S. Amari and M. Kumon, “Estimation in the presence of infinitely many nuisance parameters—Geometry of estimating functions,” Annals of Statistics, vol. 16, pp. 1044–1068, 1988.
    • (1988) Annals of Statistics , vol.16 , pp. 1044-1068
    • Amari, S.1    Kumon, M.2
  • 11
    • 0010935923 scopus 로고
    • Asymptotic theory of sequential estimation: Differential geometrical approach
    • I. Okamoto, S. Amari and K. Takeuchi, “Asymptotic theory of sequential estimation: Differential geometrical approach,” Annals of Statistics, vol. 19, pp. 961–981, 1991.
    • (1991) Annals of Statistics , vol.19 , pp. 961-981
    • Okamoto, I.1    Amari, S.2    Takeuchi, K.3
  • 12
    • 0002975366 scopus 로고
    • Differential geometry of a parametric family of invertible linear systems—Riemannian metric, dual affine connections and divergence
    • S. Amari “Differential geometry of a parametric family of invertible linear systems—Riemannian metric, dual affine connections and divergence,” Mathematical Systems Theory, vol. 20, pp. 53-82, 1987.
    • (1987) Mathematical Systems Theory , vol.20 , pp. 53-82
    • Amari, S.1
  • 13
    • 0024629649 scopus 로고
    • Statistical inference under multiterminal rate restrictions—A differential geometrical approach
    • S. Amari and T. S. Han, “Statistical inference under multiterminal rate restrictions—A differential geometrical approach,” IEEE Trans. Inform. Theory, vol. IT-35, pp. 217–227, 1989.
    • (1989) IEEE Trans. Inform. Theory , vol.IT-35 , pp. 217-227
    • Amari, S.1    Han, T.S.2
  • 14
    • 33747470032 scopus 로고
    • Fisher information under restriction of Shannon information in multiterminal situations
    • S. Amari, “Fisher information under restriction of Shannon information in multiterminal situations,” Ann. Inst. Statist. Math. 41, no. 4, pp. 623–648, 1989.
    • (1989) Ann. Inst. Statist. Math. 41 , Issue.4 , pp. 623-648
    • Amari, S.1
  • 15
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distribution, and the Bayestan restoration of images
    • S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution, and the Bayestan restoration of images,” IEEE Trans., Pattern Anal. Machine Intell., vol. PAMI-6, pp. 721–741, 1984.
    • (1984) IEEE Trans., Pattern Anal. Machine Intell. , vol.PAMI-6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 17
    • 0025508916 scopus 로고
    • A statistical approach to learning and generalization in layered neural networks
    • E. Levin, N. Tishby and S. A. Solla, “A statistical approach to learning and generalization in layered neural networks,” Proc. IEEE, vol. 78, pp. 1568–1574, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1568-1574
    • Levin, E.1    Tishby, N.2    Solla, S.A.3
  • 18
    • 84956887606 scopus 로고    scopus 로고
    • Statistical mechanics of learning from examples
    • to appear.
    • H. Seung and H. E. Sompolinski, “Statistical mechanics of learning from examples,” Phys. Rev. A, to appear.
    • Phys. Rev. A
    • Seung, H.1    Sompolinski, H.E.2
  • 19
    • 0025488578 scopus 로고
    • Mathematical foundations of neurocomputing
    • S. Amari, “Mathematical foundations of neurocomputing,” Proc. IEEE, vol. 78, pp. 1443–1463, 1990.
    • (1990) Proc. IEEE , vol.78 , pp. 1443-1463
    • Amari, S.1
  • 20
    • 0025898312 scopus 로고
    • Dualistic geometry of the manifold of higher-order neurons
    • S. Amari, “Dualistic geometry of the manifold of higher-order neurons,” Neural Networks, vol. 4, pp. 443–451, 1991.
    • (1991) Neural Networks , vol.4 , pp. 443-451
    • Amari, S.1
  • 21
    • 0001915002 scopus 로고
    • Information and accuracy attainable in the estimation of statistical parameters
    • C. R. Rao, “Information and accuracy attainable in the estimation of statistical parameters,” Bull. Calcutta Math. Soc., vol. 37, pp. 81–91, 1945.
    • (1945) Bull. Calcutta Math. Soc. , vol.37 , pp. 81-91
    • Rao, C.R.1
  • 22
    • 0002303010 scopus 로고
    • The role of differential geometry in statistical theory
    • O. Barndorf-Nielsen, D. R. Cox, and N. Reid, “The role of differential geometry in statistical theory,” Int. Statist. Rev., vol. 54, pp. 83–96, 1986.
    • (1986) Int. Statist. Rev. , vol.54 , pp. 83-96
    • Barndorf-Nielsen, O.1    Cox, D.R.2    Reid, N.3
  • 23
    • 84972503977 scopus 로고
    • The geometry of asymptotic inference
    • R. E. Kass, “The geometry of asymptotic inference,” Statistical Science, vol. 4, pp. 188–234, 1989.
    • (1989) Statistical Science , vol.4 , pp. 188-234
    • Kass, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.