메뉴 건너뛰기




Volumn 40, Issue 2, 1992, Pages 446-450

Fast Learning Process of Multilayer Neural Networks Using Recursive Least Squares Method

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; MATHEMATICAL TECHNIQUES - ALGORITHMS;

EID: 0026820187     PISSN: 1053587X     EISSN: 19410476     Source Type: Journal    
DOI: 10.1109/78.124956     Document Type: Article
Times cited : (85)

References (12)
  • 1
    • 0003444646 scopus 로고    scopus 로고
    • Parallel distributed Processing: Explorations in the microstructure of cognition
    • Cambridg: MA: M.I.T. Press
    • D. E. Rumelhart and J. L. McClelland, “Parallel distributed Processing: Explorations in the microstructure of cognition,” vol. 1. Cambridge, MA: M.I.T. Press.
    • , vol.1
    • Rumelhart, D.E.1    McClelland, J.L.2
  • 2
    • 0003794792 scopus 로고
    • Experiments on learning by backpropagation
    • Carnegie-Mellon Univ. June
    • D. C. Plaut, S. J. Nowlan, and G. E. Hinton. “Experiments on learning by backpropagation,” Int. Rep., Comput. Sci. Dep., Camegie-Mellon Univ., June 1986.
    • (1986) Int. Rep. Comput. Sci Dep.
    • Plaut, D.C.1    Nowlan, S.J.2    Hinton, G.E.3
  • 3
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Apr.
    • R. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag., vol. 4, pp. 4–22, Apr. 1987.
    • (1987) IEEE ASSP Mag. , vol.4 , pp. 4-22
    • Lippmann, R.1
  • 4
    • 0002755366 scopus 로고
    • Theory of backpropagation neural networks
    • (Washington DC) Jan.
    • R. Hecht-Nielsen, “Theory of backpropagation neural networks,” in Proc. IEEE Int. Conf. Neural Networks (Washington DC), Jan. 1989, 1-593-605.
    • (1989) Proc. IEEE Int. Conf. Neural Networks , pp. 1593-1605
    • Hecht-Nielsen, R.1
  • 5
    • 0024928079 scopus 로고
    • Fast learning process of multilayer neural nets using recursive least squares technique
    • (Washington DC) May
    • M. R. Azimi-Sadjadi and S. Citrin, “Fast learning process of multilayer neural nets using recursive least squares technique,” in Proc. IEEE Int. Conf. Neural Networks (Washington DC), May 1989.
    • (1989) Proc. IEEE Int. Conf. Neural Networks
    • Azimi-Sadjadi, M.R.1    Citrin, S.2
  • 7
  • 8
    • 0024124741 scopus 로고
    • Improving the learning rate of backpropagation with the gradient reuse algorithm
    • D. R. Hush and J. M. Salas, “Improving the learning rate of backpropagation with the gradient reuse algorithm,” in Proc. IEEE Int. Conf. Neural Networks, 1988, pp. 1441–1447.
    • (1988) Proc. IEEE Int. Conf. Neural Networks , pp. 1441-1447
    • Hush, D.R.1    Salas, J.M.2
  • 9
    • 84941464521 scopus 로고
    • Fast training of multilayer perceptron using multilinear parametrization
    • (Washington DC) Jan.
    • F. Palmieri and S. Shah, “Fast training of multilayer perceptron using multilinear parametrization,” in Proc. IEEE Int. Joint Conf Neural Networks (Washington DC), Jan. 15–19, 1990.
    • (1990) Proc. IEEE Int. Joint Conf Neural Networks , pp. 15-19
    • Palmieri, F.1    Shah, S.2
  • 10
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,” Neural Networks, vol. 1, pp. 295–307, 1988.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 11


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.