-
1
-
-
13544268841
-
Generalized Nyquist tests for robust stability: Frequency domain generalizations and Kharitonov's theorem
-
M. Milanese, R. Tempo, and A. Vicino, Eds. New York: Plenum
-
J. J. Anagnost, C. A. Desoer, and R. J. Minnichelli, “Generalized Nyquist tests for robust stability: Frequency domain generalizations and Kharitonov's theorem,” in Robustness in Identification and Control, M. Milanese, R. Tempo, and A. Vicino, Eds. New York: Plenum, 1989, pp. 79–96.
-
(1989)
Robustness in Identification and Control
, pp. 79-96
-
-
Anagnost, J.J.1
Desoer, C.A.2
Minnichelli, R.J.3
-
2
-
-
0023859609
-
Root locations of an entire polytope of polynomials: It suffices to check the edges
-
A. C. Bartlett, C. V. Hollot, and H. Lin, “Root locations of an entire polytope of polynomials: It suffices to check the edges,” Math. Contr. Signals Syst., vol. 1, pp. 61–71, 1988.
-
(1988)
Math. Contr. Signals Syst.
, vol.1
, pp. 61-71
-
-
Bartlett, A.C.1
Hollot, C.V.2
Lin, H.3
-
3
-
-
0025505444
-
Robust stability under structured and unstructured perturbations
-
H. Chapellat, M. Dahleh, and S. P. Bhattacharyya, “Robust stability under structured and unstructured perturbations,” IEEE Trans. Automat. Contr., vol. 35, pp. 1100–1108, 1990.
-
(1990)
IEEE Trans. Automat. Contr.
, vol.35
, pp. 1100-1108
-
-
Chapellat, H.1
Dahleh, M.2
Bhattacharyya, S.P.3
-
4
-
-
0025568683
-
Extreme point results for robust stabilization of interval plants with first order compensators
-
C. V. Hollot, F. J. Kraus, R. Tempo, and B. R. Barmish, “Extreme point results for robust stabilization of interval plants with first order compensators,” in Proc. Amer. Contr. Conf., 1990.
-
(1990)
Proc. Amer. Contr. Conf.
-
-
Hollot, C.V.1
Kraus, F.J.2
Tempo, R.3
Barmish, B.R.4
-
5
-
-
0001725233
-
Asymptotic stability of an equilibrium position of a family of systems of linear differential equations
-
V. L. Kharitonov, “Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,” Differential Equations, vol. 14, pp. 1483–1485, 1979.
-
(1979)
Differential Equations
, vol.14
, pp. 1483-1485
-
-
Kharitonov, V.L.1
-
6
-
-
0038827849
-
The Routh-Hurwitz problem for families of polynomials and quasi-polynomials
-
V. L. Kharitonov, “The Routh-Hurwitz problem for families of polynomials and quasi-polynomials,” Izvestiia Akademii nauk Kazakhskoi SSR, Seria fiziko-matematicheskaia, vol. 26, pp. 69–79, 1979.
-
(1979)
Izvestiia Akademii nauk Kazakhskoi SSR, Seria fiziko-matematicheskaia
, vol.26
, pp. 69-79
-
-
Kharitonov, V.L.1
-
7
-
-
0024731760
-
An elementary proof of Kharitonov's theorem with extensions
-
R. J. Minnichelli, J. J. Anagnost, and C. A. Desoer, “An elementary proof of Kharitonov's theorem with extensions,” IEEE Trans. Automat. Contr., vol. 34, pp. 995–998, 1989.
-
(1989)
IEEE Trans. Automat. Contr.
, vol.34
, pp. 995-998
-
-
Minnichelli, R.J.1
Anagnost, J.J.2
Desoer, C.A.3
-
8
-
-
0023587377
-
A new extension to Kharitonov's theorem
-
I. R. Petersen, “A new extension to Kharitonov's theorem,” in Proc. IEEE Conf. Decision Contr., 1987, pp. 2070-2075.
-
(1987)
Proc. IEEE Conf. Decision Contr.
, pp. 2070-2075
-
-
Petersen, I.R.1
-
9
-
-
84941502538
-
Kharitonov regions and their reciprocals are convex
-
to be published.
-
A. Rantzer, “Kharitonov regions and their reciprocals are convex,” Int. J. of Robust and Nonlinear Contr., to be published.
-
Int. J. of Robust and Nonlinear Contr.
-
-
Rantzer, A.1
-
10
-
-
0025474551
-
Hurwitz testing sets for parallel polytopes of polynomials
-
A. Rantzer, “Hurwitz testing sets for parallel polytopes of polynomials,” Syst. Contr. Lett., vol. 15, pp. 99–104, 1990.
-
(1990)
Syst. Contr. Lett.
, vol.15
, pp. 99-104
-
-
Rantzer, A.1
|