-
1
-
-
84897386934
-
Statistics of atomic frequency clocks
-
D. W. Allan, “Statistics of atomic frequency clocks,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.
-
(1966)
Proc. IEEE
, vol.54
, Issue.2
, pp. 221-230
-
-
Allan, D.W.1
-
2
-
-
0039852275
-
Wavelet analysis of fully developed turbulence data and measurement of scaling exponents
-
in, O. Métais and M. Lesieur, Eds. New York: Kluwer
-
E. Bacry, A. Arnéodo, U. Frisch, Y. Gagne, and E. Hopfinger, “Wavelet analysis of fully developed turbulence data and measurement of scaling exponents,” in Turbulence and Coherent Structures, O. Métais and M. Lesieur, Eds. New York: Kluwer, 1991, pp. 203–215.
-
(1991)
Turbulence and Coherent Structures
, pp. 203-215
-
-
Bacry, E.1
Arnéodo, A.2
Frisch, U.3
Gagne, Y.4
Hopfinger, E.5
-
3
-
-
0001650481
-
Fractal structure of the interplanetary magnetic field
-
L. F. Burlaga and L. W. Klein, “Fractal structure of the interplanetary magnetic field,” J. Geophys. Res., vol. 91. no. A1, pp. 347–350, 1986.
-
(1986)
J. Geophys. Res.
, vol.91
, Issue.A1
, pp. 347-350
-
-
Burlaga, L.F.1
Klein, L.W.2
-
4
-
-
2442447433
-
Ondelettes, Analyses Multirésolutions et Traitement Numérique du Signal
-
these de Doctorat, Univ. Paris IX, Dauphine
-
A. Cohen, “Ondelettes, Analyses multirésolutions et Traitement Numérique du Signal,” these de Doctorat, Univ. Paris IX, Dauphine, 1990.
-
(1990)
-
-
Cohen, A.1
-
6
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm. Pure Appl. Math., vol. XLI, no. 7, pp. 909–996, 1988.
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, Issue.7
, pp. 909-996
-
-
Daubechies, I.1
-
7
-
-
0003840368
-
Fractal Geometry
-
Chichester: J. Wiley and Sons
-
K. Falconer, Fractal Geometry, Chichester: J. Wiley and Sons, 1990.
-
(1990)
-
-
Falconer, K.1
-
8
-
-
84941476682
-
On the spectrum of fractional Brownian motions
-
Jan.
-
P. Flandrin, “On the spectrum of fractional Brownian motions,” IEEE Trans. Inform. Theory, vol. 35, pp. 197–199, Jan. 1989.
-
(1989)
IEEE Trans. Inform. Theory
, vol.35
, pp. 197-199
-
-
Flandrin, P.1
-
9
-
-
0002440843
-
Some aspects of nonstationary signal processing with emphasis on time-frequency and time-scale methods
-
[5]
-
P. Flandrin, “Some aspects of nonstationary signal processing with emphasis on time-frequency and time-scale methods,” in [5], pp. 68–98, 1989.
-
(1989)
, pp. 68-98
-
-
Flandrin, P.1
-
10
-
-
0346777968
-
Fractional Brownian motion and wavelets
-
to appear in, M. Farge. J. C. R. Hunt and J. C. Vassilicos, Eds. Oxford: Oxford Univ. Press.
-
P. Flandrin, “Fractional Brownian motion and wavelets,” to appear in Wavelets, Fractals and Fourier Transforms - New Developments and New Applications, M. Farge. J. C. R. Hunt and J. C. Vassilicos, Eds. Oxford: Oxford Univ. Press.
-
Wavelets, Fractals and Fourier Transforms - New Developments and New Applications
-
-
Flandrin, P.1
-
11
-
-
0026378049
-
Fractal dimension estimators for fractional Brownian motions
-
in, Toronto
-
N. Gache, P. Flandrin, and D. Garreau, “Fractal dimension estimators for fractional Brownian motions,” in IEEE Int. Conf. Acoust., Speech and Signal Processing, ICASSP-91, Toronto, pp. 3557–3560, 1991.
-
(1991)
IEEE Int. Conf. Acoust., Speech and Signal Processing
, vol.ICASSP-91
, pp. 3557-3560
-
-
Gache, N.1
Flandrin, P.2
Garreau, D.3
-
12
-
-
0000562670
-
Decomposition of Hardy functions into square integrable wavelets of constant shape
-
A. Grossmann and J. Morlet, “Decomposition of Hardy functions into square integrable wavelets of constant shape,” SIAM J. Math. Anal., vol. 15, no. 4, pp. 723–736, 1984.
-
(1984)
SIAM J. Math. Anal.
, vol.15
, Issue.4
, pp. 723-736
-
-
Grossmann, A.1
Morlet, J.2
-
13
-
-
45549113571
-
Approach to an irregular time series on the basis of the fractal theory
-
T. Higuchi, “Approach to an irregular time series on the basis of the fractal theory,” Physica D, vol. 31, pp. 277–283, 1988.
-
(1988)
Physica D
, vol.31
, pp. 277-283
-
-
Higuchi, T.1
-
14
-
-
0020102486
-
1/f noise
-
M. S. Keshner, “1/f noise,” Proc. IEEE, vol. 70, pp. 212–218, 1982.
-
(1982)
Proc. IEEE
, vol.70
, pp. 212-218
-
-
Keshner, M.S.1
-
15
-
-
0025545106
-
Multiscale signal detection in fractional Brownian motion
-
F. T. Luk, Ed., also in SPIE
-
M. Kim and A. H. Tewfik, “Multiscale signal detection in fractional Brownian motion,” in Advanced Signal Processing Algorithms, Architectures and Implementations, F. T. Luk, Ed., also in SPIE, vol. 1348, pp. 462–470, 1990.
-
(1990)
Advanced Signal Processing Algorithms, Architectures and Implementations
, vol.1348
, pp. 462-470
-
-
Kim, M.1
Tewfik, A.H.2
-
17
-
-
77949515579
-
Fractional Brownian motion: A maximum likelihood estimator and its application to image texture
-
T. Lundahl, W. J. Ohley, S. M. Kay, and R. Siffert, “Fractional Brownian motion: A maximum likelihood estimator and its application to image texture,” IEEE Trans. Med. Imaging, vol. MI-5, no. 3, pp. 152–161, 1986.
-
(1986)
IEEE Trans. Med. Imaging
, vol.MI-5
, Issue.3
, pp. 152-161
-
-
Lundahl, T.1
Ohley, W.J.2
Kay, S.M.3
Siffert, R.4
-
18
-
-
0024700097
-
A theory for multiresolution signal decomposition: the wavelet representation
-
S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell, vol. PAMI-11, no. 7. pp. 674–693, 1989.
-
(1989)
IEEE Trans. Pattern Anal. Machine Intell
, vol.PAMI-11
, Issue.7
, pp. 674-693
-
-
Mallat, S.G.1
-
20
-
-
0000501589
-
Fractional Brownian motions, fractional noises and applications
-
B. B. Mandelbrot and J. W. van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Rev., vol. 10, no. 4, pp. 422–437, 1968.
-
(1968)
SIAM Rev.
, vol.10
, Issue.4
, pp. 422-437
-
-
Mandelbrot, B.B.1
van Ness, J.W.2
-
21
-
-
0001817134
-
Orthonormal wavelets
-
M. Combes, A. Grossmann, and Ph. Tchamitchian, Eds. New York: Springer-Verlag
-
Y. Meyer, “Orthonormal wavelets,” in Wavelets, J. M. Combes, A. Grossmann, and Ph. Tchamitchian, Eds. New York: Springer-Verlag, 1989, pp. 21–37.
-
(1989)
Wavelets
, pp. 21-37
-
-
Meyer, Y.1
-
22
-
-
84945724298
-
Wavelets and multifractal formalism for singular signals: Application to turbulence data
-
J. F. Muzy, E. Bacry, and A. Arnéodo, “Wavelets and multifractal formalism for singular signals: Application to turbulence data,” preprint, 1991.
-
(1991)
preprint
-
-
Muzy, J.F.1
Bacry, E.2
Arnéodo, A.3
-
24
-
-
84945724299
-
Correlation structure of the discrete wavelet coefficients of fractional Brownian motions
-
to appear in
-
A. H. Tewfik and M. Kim, “Correlation structure of the discrete wavelet coefficients of fractional Brownian motions,” to appear in IEEE Trans. on Inform. Theory.
-
IEEE Trans. on Inform. Theory
-
-
Tewfik, A.H.1
Kim, M.2
-
25
-
-
84945724300
-
Wavelet transforms of self-similar processes
-
to appear in
-
M. Vergassola and U. Frisch, “Wavelet transforms of self-similar processes,” to appear in Physica D.
-
Physica D
-
-
Vergassola, M.1
Frisch, U.2
-
27
-
-
0025462413
-
A Karhunen-Loéve-like expansion for 1/f processes via wavelets
-
July
-
G. W. Wornell, “A Karhunen-Loéve-like expansion for 1/f processes via wavelets,” IEEE Trans. Inform. Theory, vol. 36, pp. 859–861, July 1990.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 859-861
-
-
Wornell, G.W.1
|