메뉴 건너뛰기




Volumn 38, Issue 2, 1992, Pages 881-884

A Sampling Theorem for Wavelet Subspaces

Author keywords

reproducing kernel; Riesz basis; Shannon sampling theorem; wavelets

Indexed keywords

INFORMATION THEORY; MATHEMATICAL TECHNIQUES - CONVERGENCE OF NUMERICAL METHODS; MATHEMATICAL TRANSFORMATIONS; SPECTRUM ANALYSIS;

EID: 0026624017     PISSN: 00189448     EISSN: 15579654     Source Type: Journal    
DOI: 10.1109/18.119745     Document Type: Article
Times cited : (260)

References (5)
  • 1
    • 84990575058 scopus 로고
    • Orthonormal bases of compactly supported wavelets
    • I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm. Pure Appl. Math., vol. 41, pp. 909–996, 1988.
    • (1988) Comm. Pure Appl. Math. , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 2
    • 0024903928 scopus 로고
    • Continuous and discrete wavelet transforms
    • C. E. Heil and D. F. Walnut, “Continuous and discrete wavelet transforms,” SIAM Rev., vol. 31, pp. 628–666, 1989.
    • (1989) SIAM Rev. , vol.31 , pp. 628-666
    • Heil, C.E.1    Walnut, D.F.2
  • 3
    • 0025842349 scopus 로고
    • General sampling theorems for functions in reproducing kernel Hilbert spaces
    • M. Z. Nashed and G. G. Walter, “General sampling theorems for functions in reproducing kernel Hilbert spaces,” Math. Control Signals Syst., vol. 4, pp. 373–412, 1991.
    • (1991) Math. Control Signals Syst. , vol.4 , pp. 373-412
    • Nashed, M.Z.1    Walter, G.G.2
  • 4
    • 84945716403 scopus 로고
    • Approximation of the delta function by wavelets
    • to appear in
    • G. Walter, “Approximation of the delta function by wavelets,” to appear in J. Approx. Theory, 1991.
    • (1991) J. Approx. Theory
    • Walter, G.1
  • 5
    • 0003561690 scopus 로고
    • An Introduction to Non-Harmonic Fourier Series
    • New York: Academic
    • R. Young, An Introduction to Non-Harmonic Fourier Series. New York: Academic, 1980.
    • (1980)
    • Young, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.