메뉴 건너뛰기




Volumn 38, Issue 12, 1991, Pages 1517-1524

Reality of Chaos in Four-Dimensional Hysteretic Circuits

Author keywords

[No Author keywords available]

Indexed keywords

CHAOS THEORY; HYSTERESIS; MATHEMATICAL TECHNIQUES - EIGENVALUES AND EIGENFUNCTIONS; MATHEMATICAL TECHNIQUES - MATRIX ALGEBRA;

EID: 0026390415     PISSN: 00984094     EISSN: None     Source Type: Journal    
DOI: 10.1109/31.108504     Document Type: Article
Times cited : (22)

References (15)
  • 1
    • 0025405332 scopus 로고
    • An approach toward higher-dimensional hysteresis chaos generators
    • T. Saito, “An approach toward higher-dimensional hysteresis chaos generators,” IEEE Trans. Circuits Syst., vol. 37, pp. 399–409, 1990.
    • (1990) IEEE Trans. Circuits Syst. , vol.37 , pp. 399-409
    • Saito, T.1
  • 2
    • 0022807650 scopus 로고
    • Hyperchaos: Laboratory experiment and numerical confirmation
    • 11
    • T. Matsumoto, L.O. Chua, and K. Kobayashi, “Hyperchaos: Laboratory experiment and numerical confirmation,” IEEE Trans. Circuits Syst., vol. CAS-33, 11, pp. 1143–1147, 1986.
    • (1986) IEEE Trans. Circuits Syst. , vol.33 CAS , pp. 1143-1147
    • Matsumoto, T.1    Chua, L.O.2    Kobayashi, K.3
  • 3
    • 0024038206 scopus 로고
    • Reality of chaos in the double scroll circuit: A computer-assisted proof
    • T. Matsumoto, L.O. Chua, and K. Ayaki, “Reality of chaos in the double scroll circuit: A computer-assisted proof,” IEEE Trans. Circuits Syst., vol. CAS-35, pp. 909–925, 1988.
    • (1988) IEEE Trans. Circuits Syst. , vol.35 CAS , pp. 909-925
    • Matsumoto, T.1    Chua, L.O.2    Ayaki, K.3
  • 4
    • 0022934940 scopus 로고
    • Chaos generation using binary hysteresis
    • R. Newcomb and N. Elleithy, “Chaos generation using binary hysteresis,” Circuits Syst. Signal Process, vol. 5, pp. 321–341, 1986.
    • (1986) Circuits Syst. Signal Process , vol.5 , pp. 321-341
    • Newcomb, R.1    Elleithy, N.2
  • 5
    • 84989476107 scopus 로고
    • On chaos generator described by a piecewise-linear constrained equation
    • T. Saito, “On chaos generator described by a piecewise-linear constrained equation,” Trans. IEICE, vol. J71-A, pp. 965–972, 1988.
    • (1988) Trans. IEICE , vol.J71-A , pp. 965-972
    • Saito, T.1
  • 6
    • 0000672504 scopus 로고
    • A numerical approach to ergodic problem of dissipative dynamical systems
    • I. Shimada and T. Nagashima, “A numerical approach to ergodic problem of dissipative dynamical systems,” Prog. Theor. Phys., vol. 61, pp. 1605–1616, 1979.
    • (1979) Prog. Theor. Phys. , vol.61 , pp. 1605-1616
    • Shimada, I.1    Nagashima, T.2
  • 7
    • 48749145669 scopus 로고
    • The dimension of chaotic attractors
    • J.D. Farmer, E. Otto, and J.A. Yorke, “The dimension of chaotic attractors,” Physica, vol. 7D, pp. 153–180, 1983.
    • (1983) Physica , vol.7 D , pp. 153-180
    • Farmer, J.D.1    Otto, E.2    Yorke, J.A.3
  • 8
    • 0001994750 scopus 로고
    • The local structure of a chaotic attractor in four dimensions
    • E.N. Lorenz, “The local structure of a chaotic attractor in four dimensions,” Physica, vol. 13D, pp. 90–104, 1984.
    • (1984) Physica , vol.13 D , pp. 90-104
    • Lorenz, E.N.1
  • 9
    • 46549096938 scopus 로고
    • Lyapunov numbers and the local structure of attractors
    • E.N. Lorenz, “Lyapunov numbers and the local structure of attractors,” Physica, vol. 17D, pp. 279–294, 1985.
    • (1985) Physica , vol.17 D , pp. 279-294
    • Lorenz, E.N.1
  • 10
    • 0024035963 scopus 로고
    • Chaos in a four-variable piecewise-linear system of differential equations
    • vol. 7
    • J.L. Hudson, O.E. Rssler, and H.C. Killory, “Chaos in a four-variable piecewise-linear system of differential equations,” IEEE Trans. Circuits Syst., vol. CAS-35, vol. 7, pp. 902–908, 1988.
    • (1988) IEEE Trans. Circuits Syst. , vol.35 CAS , pp. 902-908
    • Hudson, J.L.1    Rssler, O.E.2    Killory, H.C.3
  • 11
    • 84913013873 scopus 로고
    • Bifurcation route from two periodic solutions to chaos in a nonlinear system of two-degree of freedom
    • T. Endo and T. Narita, “Bifurcation route from two periodic solutions to chaos in a nonlinear system of two-degree of freedom,” Trans. IEICE, vol. J71-A, pp. 1752–1755, 1988.
    • (1988) Trans. IEICE , vol.J71-A , pp. 1752-1755
    • Endo, T.1    Narita, T.2
  • 12
    • 0345824780 scopus 로고
    • Codimension two bifurcation in nonlinear circuits with periodically forcing term
    • T. Yoshinaga and H. Kawakami, “Codimension two bifurcation in nonlinear circuits with periodically forcing term,” Trans. IEICE, vol. J72-A, pp. 1821–1828, 1989.
    • (1989) Trans. IEICE , vol.J72-A , pp. 1821-1828
    • Yoshinaga, T.1    Kawakami, H.2
  • 13
    • 45449122562 scopus 로고
    • Symmetric-increasing bifurcation of chaotic attractors
    • P. Chossat and M. Golubitsky, “Symmetric-increasing bifurcation of chaotic attractors,” Physica D, vol. 32, pp. 423–436, 1988.
    • (1988) Physica D , vol.32 , pp. 423-436
    • Chossat, P.1    Golubitsky, M.2
  • 14
    • 0004896004 scopus 로고
    • Nonlinear dynamos: A complex generalization of the Lorenz equations
    • C.A. Jones, N.O. Weiss, and F. Cattaneo, “Nonlinear dynamos: A complex generalization of the Lorenz equations,” Physica, vol. 14D, pp. 161–176, 1985.
    • (1985) Physica , vol.14 D , pp. 161-176
    • Jones, C.A.1    Weiss, N.O.2    Cattaneo, F.3
  • 15
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • E.N. Lorenz, “Deterministic nonperiodic flow,” J. Atoms. Sci., vol. 20, pp. 130–141, 1963.
    • (1963) J. Atoms. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.