메뉴 건너뛰기




Volumn 21, Issue 4, 1991, Pages 815-825

Neural Networks in Process Fault Diagnosis

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATA THEORY; AUTOMATION; COMPUTER ARCHITECTURE; EXPERT SYSTEMS; FAILURE ANALYSIS; HEAT EXCHANGERS; NUCLEAR POWER PLANTS; NUCLEAR REACTORS; PATTERN RECOGNITION;

EID: 0026184139     PISSN: 00189472     EISSN: 21682909     Source Type: Journal    
DOI: 10.1109/21.108299     Document Type: Article
Times cited : (225)

References (37)
  • 1
    • 0024016387 scopus 로고
    • Detecting changes in signals and systems A survey
    • M. Basseville, “Detecting changes in signals and systems A survey,” Automatica, vol. 24, pp. 309-326, 1988.
    • (1988) Automatica , vol.24 , pp. 309-326
    • Basseville, M.1
  • 3
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control, Signals, and Systems, vol. 2, pp. 303-314, 1989.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 5
    • 0025421966 scopus 로고
    • Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy A survey and some new results
    • P.M. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy A survey and some new results,” Automatica, vol. 26, pp. 459- 474, 1990.
    • (1990) Automatica , vol.26 , pp. 459-474
    • Frank, P.M.1
  • 6
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. Funahashi, “On the approximate realization of continuous mappings by neural networks,” Neural Networks, vol. 2, pp. 183-192, 1989.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 7
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered network trained to classify sonar targets,” Neural Networks, vol. 1, pp. 75-89, 1988.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 8
    • 0023834037 scopus 로고
    • Applications of counterpropagation networks
    • R. Hecht-Nielsen, “Applications of counterpropagation networks,” Neural Networks, vol. 1, pp. 131-139, 1988.
    • (1988) Neural Networks , vol.1 , pp. 131-139
    • Hecht-Nielsen, R.1
  • 9
    • 0023515080 scopus 로고
    • Counterpropagation networks
    • “Counterpropagation networks,” Applied Optics, vol. 26, pp. 4979-4984, 1987
    • (1987) Applied Optics , vol.26 , pp. 4979-4984
  • 11
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 0040287998 scopus 로고
    • Artificial neural network models of knowledge representation in chemical engineering
    • J. C. Hoskins and D. M. Himmelblau, “Artificial neural network models of knowledge representation in chemical engineering,” Comput. Chem. Eng., vol. 12, pp. 881-890, 1988.
    • (1988) Comput. Chem. Eng. , vol.12 , pp. 881-890
    • Hoskins, J.C.1    Himmelblau, D.M.2
  • 13
    • 0021468997 scopus 로고
    • Process fault detection based on modeling and estimation methods-A survey
    • R. Isermann, “Process fault detection based on modeling and estimation methods-A survey,” Automatica, vol. 20, pp. 387-404, 1984.
    • (1984) Automatica , vol.20 , pp. 387-404
    • Isermann, R.1
  • 14
    • 0000581781 scopus 로고
    • Backpropagation
    • Oct.
    • W. P. Jones and J. Hoskins, “Backpropagation,” BYTE, vol. 12, pp. 155-162, Oct. 1987.
    • (1987) BYTE , vol.12 , pp. 155-162
    • Jones, W.P.1    Hoskins, J.2
  • 15
    • 0023521375 scopus 로고
    • Adaptive, associative, and self-organizing functions in neural computing
    • T. Kohonen, “Adaptive, associative, and self-organizing functions in neural computing,” Applied Optics, vol. 26, pp. 4910-4918, 1987.
    • (1987) Applied Optics , vol.26 , pp. 4910-4918
    • Kohonen, T.1
  • 16
    • 0023855839 scopus 로고
    • An introduction to neural computing
    • “An introduction to neural computing,” Neural Networks, vol. 1, pp. 3-16, 1988.
    • (1988) Neural Networks , vol.1 , pp. 3-16
  • 18
    • 0023983407 scopus 로고
    • The ‘neural’ phonetic typewriter
    • “The ‘neural’ phonetic typewriter,” IEEE Computer, vol. 21, pp. 11-22, 1988.
    • (1988) IEEE Computer , vol.21 , pp. 11-22
  • 20
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • April
    • R. P. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag., vol. 4, pp. 4-22, April 1987.
    • (1987) IEEE ASSP Mag. , vol.4 , pp. 4-22
    • Lippmann, R.P.1
  • 21
    • 84941531665 scopus 로고
    • On hidden nodes for neural nets
    • G. Mirchandani and W. Cao, “On hidden nodes for neural nets,” IEEE Trans. Circuits Syst., vol. 36, pp. 661-664, 1989.
    • (1989) IEEE Trans. Circuits Syst. , vol.36 , pp. 661-664
    • Mirchandani, G.1    Cao, W.2
  • 22
    • 0025419936 scopus 로고
    • Use of neural networks for sensor failure detection in a control system
    • April
    • S. R. Naidu, E. Zafiriou, and T. J. McAvoy, “Use of neural networks for sensor failure detection in a control system,” IEEE Contr. Syst. Mag., vol. 10, pp. 49-55, April 1990.
    • (1990) IEEE Contr. Syst. Mag. , vol.10 , pp. 49-55
    • Naidu, S.R.1    Zafiriou, E.2    McAvoy, T.J.3
  • 24
    • 0024070598 scopus 로고
    • Qualitative simulation of chemical process systems: steadystate analysis
    • O.O. Oyeleye and M.A. Kramer, “Qualitative simulation of chemical process systems: steadystate analysis,” AIChE J., vol. 34, pp. 1441-1454, 1988.
    • (1988) AIChE J. , vol.34 , pp. 1441-1454
    • Oyeleye, O.O.1    Kramer, M.A.2
  • 28
    • 0023169453 scopus 로고
    • Model-based reasoning in diagnostic expert systems for chemical process plants
    • S. H. Rich and V. Venkatasubramanian, “Model-based reasoning in diagnostic expert systems for chemical process plants,” Comput. Chem. Engng., vol. 11, pp. 111-122, 1987.
    • (1987) Comput. Chem. Engng. , vol.11 , pp. 111-122
    • Rich, S.H.1    Venkatasubramanian, V.2
  • 32
    • 0024905756 scopus 로고
    • A neural network methodology for process fault diagnosis
    • V. Venkatasubramanian and K. Chan, “A neural network methodology for process fault diagnosis,” AIChE J., vol. 35, pp. 1993-2002, 1989.
    • (1989) AIChE J. , vol.35 , pp. 1993-2002
    • Venkatasubramanian, V.1    Chan, K.2
  • 34
    • 0024764296 scopus 로고
    • Incipient fault diagnosis of chemical processes via artificial neural networks
    • K. Watanabe, I. Matsuura, M. Abe, M. Kubota, and D. M. Himmelblau, “Incipient fault diagnosis of chemical processes via artificial neural networks,” AIChE J., vol. 35, pp. 1803-1812, 1989.
    • (1989) AIChE J. , vol.35 , pp. 1803-1812
    • Watanabe, K.1    Matsuura, I.2    Abe, M.3    Kubota, M.4    Himmelblau, D.M.5
  • 35
    • 0017022844 scopus 로고
    • A survey of design methods for failure detection in dynamic systems
    • A. S. Willsky, “A survey of design methods for failure detection in dynamic systems,” Automatica, vol. 12, pp. 601-611, 1976.
    • (1976) Automatica , vol.12 , pp. 601-611
    • Willsky, A.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.