메뉴 건너뛰기




Volumn 13, Issue 4, 1991, Pages 355-364

Optimized Feature Extraction and the Bayes Decision in Feed-Forward Classifier Networks

Author keywords

Adaptive layered networks; Bayes minimum risk; discriminant analysis; learning; least squares optimization; pattern classification; prior probabilities

Indexed keywords

DECISION THEORY AND ANALYSIS; MATHEMATICAL TECHNIQUES - LEAST SQUARES APPROXIMATIONS; NEURAL NETWORKS;

EID: 0026140690     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/34.88570     Document Type: Article
Times cited : (72)

References (29)
  • 1
    • 0025532297 scopus 로고
    • An approximation of nonlinear discriminant analysis by multilayer neural networks
    • San Diego, CA
    • H. Asoh and N. Otsu, “An approximation of nonlinear discriminant analysis by multilayer neural networks, in Proc. Int. Joint Conf Neural Networks, San Diego, CA, 1990, pp. III-211-III-216.
    • (1990) Proc. Int. Joint Conf Neural Networks , pp. 3-211-3-216
    • Asoh, H.1    Otsu, N.2
  • 2
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • H. Bourlard and K. Homik, “Neural networks and principal component analysis: Learning from examples without local minima,” Neural Networks, vol. 2, pp. 53–58, 1988.
    • (1988) Neural Networks , vol.2 , pp. 53-58
    • Bourlard, H.1    Homik, K.2
  • 3
    • 0024124745 scopus 로고
    • A multi-layer perceptron network for the diagnosis of low back pain
    • California
    • D. G. Bounds, B. Mathew, and G. Waddell, “A multi-layer perceptron network for the diagnosis of low back pain,” in Proc. IEEE Int. Conf. Neural Networks, vol. II, California, 1988, pp. II–481 — II–489.
    • (1988) Proc. IEEE Int. Conf. Neural Networks , vol.2 , pp. 2-481-2-489
    • Bounds, D.G.1    Mathew, B.2    Waddell, G.3
  • 5
    • 0000621802 scopus 로고
    • Multi-variable functional interpolation and adaptive networks
    • D. S. Broomhead and D. Lowe, “Multi-variable functional interpolation and adaptive networks,” Complex Systems, vol. 2, no. 3, pp. 269–303, 1988.
    • (1988) Complex Systems , vol.2 , Issue.3 , pp. 269-303
    • Broomhead, D.S.1    Lowe, D.2
  • 6
    • 0015744688 scopus 로고
    • Relationships between statistical risks and the least-mean-square error design criterion in pattern recognition
    • Washington, Nov.
    • P.A. Devijver, “Relationships between statistical risks and the least-mean-square error design criterion in pattern recognition,” in Proc. First Int. Joint Conf. Pattern Recognition, Washington, Nov. 1973, pp. 139–148.
    • (1973) Proc. First Int. Joint Conf. Pattern Recognition , pp. 139-148
    • Devijver, P.A.1
  • 8
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugenics, vol. 7, pp. 179–188, 1936.
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 10
  • 11
    • 0000288016 scopus 로고
    • Calculating the singular values and pseudo-inverse of a matrix
    • G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse of a matrix,” SIAM. Numer. Anal., vol. 2, no. 2, pp. 205–224, 1965.
    • (1965) SIAM. Numer. Anal. , vol.2 , Issue.2 , pp. 205-224
    • Golub, G.1    Kahan, W.2
  • 12
    • 0000333571 scopus 로고
    • An analysis of the total least squares problem
    • G.H. Golub and C. F. Van Loan, “An analysis of the total least squares problem,” SIAM. Numer. Anal., vol. 17, no. 6, pp. 883–893, 1980.
    • (1980) SIAM. Numer. Anal. , vol.17 , Issue.6 , pp. 883-893
    • Golub, G.H.1    Van Loan, C.F.2
  • 13
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered network trained to classify sonar targets,” Neural Networks, vol. 1, no. 1, pp. 75–90, 1989.
    • (1989) Neural Networks , vol.1 , Issue.1 , pp. 75-90
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 15
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • P. R. Krishnaiah, and L. N. Kanal, Eds. Amsterdam, The Netherlands: North-Holland
    • A. K. Jain and B. Chandrasekharan, “Dimensionality and sample size considerations in pattern recognition practice,” in Handbook of Statistics, vol. 2, P. R. Krishnaiah, and L. N. Kanal, Eds. Amsterdam, The Netherlands: North-Holland, 1982, pp. 835–855.
    • (1982) Handbook of Statistics , vol.2 , pp. 835-855
    • Jain, A.K.1    Chandrasekharan, B.2
  • 16
    • 0000478224 scopus 로고
    • Exploiting prior knowledge in network optimisation: An illustration from medical prognosis
    • D. Lowe and A. R. Webb, “Exploiting prior knowledge in network optimisation: An illustration from medical prognosis,” Network, vol. 1, no. 3, pp. 299–323, 1990.
    • (1990) Network , vol.1 , Issue.3 , pp. 299-323
    • Lowe, D.1    Webb, A.R.2
  • 17
    • 49949120783 scopus 로고
    • Least-square methods in abstract pattern recognition
    • W. S. Meisel, “Least-square methods in abstract pattern recognition,” Inform. Sci., vol. 1, pp. 23–42, 1968.
    • (1968) Inform. Sci. , vol.1 , pp. 23-42
    • Meisel, W.S.1
  • 18
    • 84941531665 scopus 로고
    • On hidden nodes for neural networks
    • G. Mirchandani and W. Cao, “On hidden nodes for neural networks,” IEEE Trans. Circuits Syst., vol. 36, no. 5, pp. 661–664, 1989.
    • (1989) IEEE Trans. Circuits Syst. , vol.36 , Issue.5 , pp. 661-664
    • Mirchandani, G.1    Cao, W.2
  • 20
    • 33749913277 scopus 로고
    • The multi-layer perceptron as a tool for speech pattern processing research
    • S.M. Peeling, R. K. Moore, and M.J. Tomlinson, “The multi-layer perceptron as a tool for speech pattern processing research,” in Proc. IoA Autumn Conf Speech and Hearing, vol. 8, pp. 307–314, 1986.
    • (1986) Proc. IoA Autumn Conf Speech and Hearing , vol.8 , pp. 307-314
    • Peeling, S.M.1    Moore, R.K.2    Tomlinson, M.J.3
  • 22
    • 0000840950 scopus 로고
    • Generation of polynomial discriminant functions for pattern recognition
    • D. F. Specht, “Generation of polynomial discriminant functions for pattern recognition,” IEEE Trans. Electron. Comput., vol. EC-16, no. 3, pp. 308–319, 1967.
    • (1967) IEEE Trans. Electron. Comput. , vol.EC-16 , Issue.3 , pp. 308-319
    • Specht, D.F.1
  • 23
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 24
    • 0043098510 scopus 로고
    • A comparison of nonlinear optimisation strategies for feed-forward adaptive layered networks
    • A. R. Webb and D. Lowe, “A comparison of nonlinear optimisation strategies for feed-forward adaptive layered networks,” RSRE Memo. 4157, 1988.
    • (1988) RSRE Memo. 4157
    • Webb, A.R.1    Lowe, D.2
  • 25
    • 0043098510 scopus 로고
    • A hybrid optimization strategy for adaptive feed-forward layered networks
    • A. R. Webb and D. Lowe, “A hybrid optimization strategy for adaptive feed-forward layered networks,” RSRE Memo. 4193, 1988.
    • (1988) RSRE Memo. 4193
    • Webb, A.R.1    Lowe, D.2
  • 26
    • 0025208603 scopus 로고
    • The optimized internal representation of multilayer classifier networks performs nonlinear discriminant analysis
    • A. R. Webb and D. Lowe, “The optimized internal representation of multilayer classifier networks performs nonlinear discriminant analysis,” Neural Networks, vol. 3, no. 4, pp. 367–375, 1990.
    • (1990) Neural Networks , vol.3 , Issue.4 , pp. 367-375
    • Webb, A.R.1    Lowe, D.2
  • 27
    • 0013375801 scopus 로고
    • Generalized inverse approach to adaptive multiclass pattern classification
    • W. G. Wee, “Generalized inverse approach to adaptive multiclass pattern classification,” IEEE Trans. Comput., vol. C-17, no. 12, pp. 1157–1164, 1968.
    • (1968) IEEE Trans. Comput. , vol.C-17 , Issue.12 , pp. 1157-1164
    • Wee, W.G.1
  • 28
    • 84910220380 scopus 로고
    • Least-mean-square approach to pattern classification
    • M. S. Wantanabe, Ed. New York: Academic
    • S. S. Yau and J. M. Garnett, “Least-mean-square approach to pattern classification,” in Frontiers of Pattern Recognition, M. S. Wantanabe, Ed. New York: Academic, 1972.
    • (1972) Frontiers of Pattern Recognition
    • Yau, S.S.1    Garnett, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.