-
2
-
-
84976855597
-
Solution of the equation AX+XB = C
-
R. H. Bartels and G. W. Stewart, “Solution of the equation AX+XB = C,” Commun. ACM, vol. 15, pp. 820-826, 1972.
-
(1972)
Commun. ACM
, vol.15
, pp. 820-826
-
-
Bartels, R.H.1
Stewart, G.W.2
-
3
-
-
70149096006
-
Efficient algorithms for solving stiff matrix-valued Riccati differential equations
-
Ph.D. dissertation, ECE Dep., Univ. Calif., Santa Barbara, Sept.
-
C. H. Choi, “Efficient algorithms for solving stiff matrix-valued Riccati differential equations,” Ph.D. dissertation, ECE Dep., Univ. Calif., Santa Barbara, Sept. 1988.
-
(1988)
-
-
Choi, C.H.1
-
4
-
-
0023412542
-
Improving the efficiency of matrix operations in the numerical solution of large implicit systems of linear differential equations
-
C. H. Choi and A. J. Laub, “Improving the efficiency of matrix operations in the numerical solution of large implicit systems of linear differential equations,” Int. J. Contr., vol. 46, pp. 991-1008, 1987.
-
(1987)
Int. J. Contr.
, vol.46
, pp. 991-1008
-
-
Choi, C.H.1
Laub, A.J.2
-
6
-
-
0015586663
-
The numerical solution of the matrix Riccati differential equation
-
E. J. Davison and M. C. Maki, “The numerical solution of the matrix Riccati differential equation,” IEEE Trans. Automat. Contr., vol. AC-18, pp. 71-73, 1973.
-
(1973)
IEEE Trans. Automat. Contr.
, vol.AC-18
, pp. 71-73
-
-
Davison, E.J.1
Maki, M.C.2
-
7
-
-
0016443950
-
Comparing numerical methods for stiff systems of O.D.E.'s
-
W. H. Enright, T. E. Hull, and B. Lindberg, “Comparing numerical methods for stiff systems of O.D.E.'s,” BIT, vol. 15, pp. 10-48, 1975.
-
(1975)
BIT
, vol.15
, pp. 10-48
-
-
Enright, W.H.1
Hull, T.E.2
Lindberg, B.3
-
8
-
-
0000854076
-
The automatic integration of stiff ordinary differentia', equations
-
A. J. H. Morrell, Ed. Amsterdam, The Netherlands: North-Holland
-
C. W. Gear, “The automatic integration of stiff ordinary differentia', equations,” in Information Processing 68, A. J. H. Morrell, Ed. Amsterdam, The Netherlands: North-Holland, 1969, pp. 187-193.
-
(1969)
Information Processing 68
, pp. 187-193
-
-
Gear, C.W.1
-
10
-
-
0018721357
-
A Hessenberg-Schur method for the problem AX + XB = C
-
G. H. Golub, S. Nash, and C. Van Loan, “A Hessenberg-Schur method for the problem AX + XB = C,” IEEE Trans. Automat. Contr., vol. AC-24, pp. 909-913, 1979.
-
(1979)
IEEE Trans. Automat. Contr.
, vol.AC-24
, pp. 909-913
-
-
Golub, G.H.1
Nash, S.2
Van Loan, C.3
-
11
-
-
0040444397
-
Bäcklund transformations for the SU‘n’ principal σ-model
-
J. Harnad, Y. Saint-Aubin, and S. Schneider, “Bäcklund transformations for the SU‘n’ principal σ-model,” J. Math. Phys., vol. 25, pp. 368-375, 1984.
-
(1984)
J. Math. Phys.
, vol.25
, pp. 368-375
-
-
Harnad, J.1
Saint-Aubin, Y.2
Schneider, S.3
-
12
-
-
36749113210
-
Superposition principles for matrix Riccati equations
-
J. Harnad, P. Winternitz, and R. L. Anderson, “Superposition principles for matrix Riccati equations,” J. Math. Phys., vol. 24, pp. 1062-1072, 1983.
-
(1983)
J. Math. Phys.
, vol.24
, pp. 1062-1072
-
-
Harnad, J.1
Winternitz, P.2
Anderson, R.L.3
-
13
-
-
0020298486
-
Large ordinary differential equation systems and software
-
Dec.
-
A. C. Hindmarsh, “Large ordinary differential equation systems and software,” Contr. Syst. Mag., pp. 24-30, Dec. 1981.
-
(1981)
Contr. Syst. Mag.
, pp. 24-30
-
-
Hindmarsh, A.C.1
-
14
-
-
84941478931
-
COLODE: A collocation subroutine for ordinary differential equations
-
Rep. SAND74-0380, Sandia Lab., Albuquerque, NM
-
B. L. Humle, “COLODE: A collocation subroutine for ordinary differential equations,” Rep. SAND74-0380, Sandia Lab., Albuquerque, NM, 1974.
-
(1974)
-
-
Humle, B.L.1
-
15
-
-
84912275157
-
A user's manual for the automatic synthesis program
-
June
-
R. E. Kalman and T. S. Englar, “A user's manual for the automatic synthesis program,” NASA Rep. CR-475, June 1966.
-
(1966)
NASA Rep. CR-475
-
-
Kalman, R.E.1
Englar, T.S.2
-
16
-
-
0022132859
-
Numerical integration of the differential matrix Riccati equation
-
C. S. Kenney and R. B. Leipnik, “Numerical integration of the differential matrix Riccati equation,” IEEE Trans. Automat. Contr., vol. AC-30, pp. 962-970, 1985.
-
(1985)
IEEE Trans. Automat. Contr.
, vol.AC-30
, pp. 962-970
-
-
Kenney, C.S.1
Leipnik, R.B.2
-
17
-
-
0021501125
-
Applications of singular perturbation techniques to control problems
-
P. Kokotovic, “Applications of singular perturbation techniques to control problems,” SI AM Review, vol. 26, pp. 501-550, 1984.
-
(1984)
SI AM Review
, vol.26
, pp. 501-550
-
-
Kokotovic, P.1
-
18
-
-
0017009904
-
Partitioned Riccati solutions and integration-free doubling algorithms
-
D. G. Lainiotis, “Partitioned Riccati solutions and integration-free doubling algorithms,” IEEE Trans. Automat. Contr., vol. AC-21, pp. 677-689, 1976.
-
(1976)
IEEE Trans. Automat. Contr.
, vol.AC-21
, pp. 677-689
-
-
Lainiotis, D.G.1
-
19
-
-
0017009729
-
Generalized Chandrasekhar algorithms: Time-varying models
-
D. G. Lainiotis, “Generalized Chandrasekhar algorithms: Time-varying models,” IEEE Trans. Automat. Contr., vol. AC-21, pp. 728-732, 1976.
-
(1976)
IEEE Trans. Automat. Contr.
, vol.AC-21
, pp. 728-732
-
-
Lainiotis, D.G.1
-
20
-
-
0020258408
-
Schur techniques for Riccati differential equations
-
D. Hinrichsen and A. Isidori, Eds. New York: Springer-Verlag
-
A. J. Laub, “Schur techniques for Riccati differential equations,” in Feedback Control of Linear and Nonlinear Systems, D. Hinrichsen and A. Isidori, Eds. New York: Springer-Verlag, 1982, pp. 165-174.
-
(1982)
Feedback Control of Linear and Nonlinear Systems
, pp. 165-174
-
-
Laub, A.J.1
|