-
1
-
-
0023123263
-
Modeling and segmentation of noisy and textured images using Gibbs random fields
-
Jan.
-
H. Derin and H. Elliott, “Modeling and segmentation of noisy and textured images using Gibbs random fields,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 39–55, Jan. 1987.
-
(1987)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.PAMI-9
, pp. 39-55
-
-
Derin, H.1
Elliott, H.2
-
2
-
-
0023312371
-
Simple parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian fields
-
Mar.
-
F. S. Cohen and D. B. Cooper, “Simple parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian fields.” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 195–219, Mar. 1987.
-
(1987)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.PAMI-9
, pp. 195-219
-
-
Cohen, F.S.1
Cooper, D.B.2
-
3
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images
-
Nov.
-
S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 721–741, Nov. 1984.
-
(1984)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.PAMI-6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
4
-
-
0022417790
-
Computational vision and regularization theory
-
Sept.
-
T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature, vol. 317, pp. 314-319, Sept. 1985.
-
(1985)
Nature
, vol.317
, pp. 314-319
-
-
Poggio, T.1
Torre, V.2
Koch, C.3
-
5
-
-
0024053982
-
Image restoration using a neural network
-
July
-
Y. T. Zhou, R. Chellappa, A. Vaid, and B. K. Jenkins, “Image restoration using a neural network,” IEEE Trans. Acoust., Speech, Signal Process., vol. 36, pp. 1141–1151, July 1988.
-
(1988)
IEEE Trans. Acoust., Speech, Signal Process.
, vol.36
, pp. 1141-1151
-
-
Zhou, Y.T.1
Chellappa, R.2
Vaid, A.3
Jenkins, B.K.4
-
6
-
-
0023672105
-
Stereo matching using a neural network
-
(New York, NY), Apr.
-
Y. T. Zhou and R. Chellappa, “Stereo matching using a neural network,” in Proc. IEEE Int. Conf Acoust., Speech, Signal Process. (New York, NY), Apr. 1988, pp. 940–943.
-
(1988)
Proc. IEEE Int. Conf Acoust., Speech, Signal Process
, pp. 940-943
-
-
Zhou, Y.T.1
Chellappa, R.2
-
7
-
-
84941862797
-
Computation motion using resistive networks
-
(Denver, CO)
-
C. Koch, J. Luo, C. Mead, and J. Hutchinson, “Computation motion using resistive networks,” in Proc. Neural Inform. Process. Syst. (Denver, CO), 1987.
-
(1987)
Proc. Neural Inform. Process. Syst.
-
-
Koch, C.1
Luo, J.2
Mead, C.3
Hutchinson, J.4
-
8
-
-
0024122606
-
Computation of optical flow using a neural network
-
(San Diego, CA)
-
Y. T. Zhou and R. Chellappa, “Computation of optical flow using a neural network,” in Proc. IEEE Int. Conf. Neural Networks, vol. 2 (San Diego, CA), pp. 71–78.
-
Proc. IEEE Int. Conf. Neural Networks
, vol.2
, pp. 71-78
-
-
Zhou, Y.T.1
Chellappa, R.2
-
9
-
-
0024551777
-
A parallel algorithm for realtime computation of optical flow
-
Feb.
-
H. Bulthoff, J. Little, and T. Poggio, “A parallel algorithm for realtime computation of optical flow,” Nature, vol. 337, pp. 549–553. Feb. 1989.
-
(1989)
Nature
, vol.337
, pp. 549-553
-
-
Bulthoff, H.1
Little, J.2
Poggio, T.3
-
10
-
-
0021835689
-
Neural computation of decisions in optimization problems
-
J. J. Hopfield and D. W. Tank, “Neural computation of decisions in optimization problems,” Biolog. Cybernet., vol. 52, pp. 114–152, 1985.
-
(1985)
Biolog. Cybernet.
, vol.52
, pp. 114-152
-
-
Hopfield, J.J.1
Tank, D.W.2
-
11
-
-
0000013152
-
On the statistical analysis of dirty pictures
-
J. Besag, “On the statistical analysis of dirty pictures,” J. Roy. Statist. Soc. B. vol. 48, pp. 259–302, 1986.
-
(1986)
J. Roy. Statist. Soc. B.
, vol.48
, pp. 259-302
-
-
Besag, J.1
-
12
-
-
0016082525
-
Learning automata—A survey
-
July
-
K. S. Narendra and M. A. L. Thathachar, “Learning automata—A survey,” IEEE Trans. Syst., Man, Cybern., pp. 323–334, July 1974.
-
(1974)
IEEE Trans. Syst., Man, Cybern.
, pp. 323-334
-
-
Narendra, K.S.1
Thathachar, M.A.L.2
-
15
-
-
0002480122
-
Two-dimensional discrete Gaussian Markov random field models for image processing
-
L. N. Kanal and A. Rosenfeld, Eds. New York: Elsevier
-
R. Chellappa, “Two-dimensional discrete Gaussian Markov random field models for image processing.” in Progress in Pattern Recognition 2, L. N. Kanal and A. Rosenfeld, Eds. New York: Elsevier, 1985, pp. 79–112.
-
(1985)
Progress in Pattern Recognition
, vol.2
, pp. 79-112
-
-
Chellappa, R.1
-
17
-
-
0022102621
-
Classification of textures using Gaussian-Markov random fields
-
Aug.
-
R. Chellappa and S. Chatterjee, “Classification of textures using Gaussian-Markov random fields,” IEEE Trans. Acoust., Speech. Signal Process., vol. ASSP-33, pp. 959–963, Aug. 1985.
-
(1985)
IEEE Trans. Acoust., Speech. Signal Process.
, vol.ASSP-33
, pp. 959-963
-
-
Chellappa, R.1
Chatterjee, S.2
-
18
-
-
0002199090
-
Markov random fields image models and their application to computer vision
-
(Providence).
-
S. Geman and C. Gratligne, “Markov random fields image models and their application to computer vision,” in Proc. Int. Congress of Mathematicans 1986 (Providence).
-
(1986)
Proc. Int. Congress of Mathematicans
-
-
Geman, S.1
Gratligne, C.2
-
19
-
-
0012667451
-
Probabilistic solution of ill-posed problems in computer vision
-
(Miami Beach. FL). Dec.
-
J. Marroquin, S. Mitter, and T. Poggio, “Probabilistic solution of ill-posed problems in computer vision,” in Proc. Image Understanding Workshop (Miami Beach. FL). Dec. 1985, pp. 293–309.
-
(1985)
Proc. Image Understanding Workshop
, pp. 293-309
-
-
Marroquin, J.1
Mitter, S.2
Poggio, T.3
-
20
-
-
0001939254
-
Non-stationary Markov chains and convergence of the annealing algorithm
-
B. Gidas, “Non-stationary Markov chains and convergence of the annealing algorithm.” J. Statist. Phys., vol. 39, pp. 73–131, 1985.
-
(1985)
J. Statist. Phys.
, vol.39
, pp. 73-131
-
-
Gidas, B.1
-
21
-
-
0022738693
-
Decentralized learning in finite Markov chains
-
June
-
R. M. Wheeler. Jr., and K. S. Narendra, “Decentralized learning in finite Markov chains.” IEEE Trans. Automat. Contr., vol. AC-31, pp. 519–526, June 1986.
-
(1986)
IEEE Trans. Automat. Contr.
, vol.AC-31
, pp. 519-526
-
-
Wheeler, R.M.1
Narendra, K.S.2
-
23
-
-
0022184180
-
Maximum likelihood texture segmentation using Gaussian Markov random field models
-
(San Francisco. CA). June
-
S. Chatterjee and R. Chellappa, “Maximum likelihood texture segmentation using Gaussian Markov random field models.” in Proc. Computer Vision and Pattern Recognition Conf. (San Francisco. CA). June 1985.
-
(1985)
Proc. Computer Vision and Pattern Recognition Conf.
-
-
Chatterjee, S.1
Chellappa, R.2
|