-
1
-
-
0022118124
-
Recording codes for digital magnetic storage
-
Sept.
-
P. H. Siegel, “Recording codes for digital magnetic storage,” IEEE Trans. Magn., vol. MAG-21, pp. 1344–1349, Sept. 1985.
-
(1985)
IEEE Trans. Magn.
, vol.MAG-21
, pp. 1344-1349
-
-
Siegel, P.H.1
-
2
-
-
0016551249
-
Surprising properties of two-level bandwidth compaction codes
-
Sept.
-
M. G. Pelchat and J. M. Geist, “Surprising properties of two-level bandwidth compaction codes,” IEEE Trans. Commun., vol. COM-23, pp. 878–883, Sept. 1975.
-
(1975)
IEEE Trans. Commun.
, vol.COM-23
, pp. 878-883
-
-
Pelchat, M.G.1
Geist, J.M.2
-
3
-
-
0020908042
-
Some statistical properties of maxentropic runlength-limited sequences
-
K. A. S. Immink, “Some statistical properties of maxentropic runlength-limited sequences,” Philips J. Res., vol. 38, no. 3, pp. 138–149, 1983.
-
(1983)
Philips J. Res.
, vol.38
, Issue.3
, pp. 138-149
-
-
Immink, K.A.S.1
-
5
-
-
84939743142
-
Signal processing for digital magnetic recording channels
-
Univ. California, San Diego
-
C. A. French, “Signal processing for digital magnetic recording channels,” Ph.D. dissertation, Univ. California, San Diego, 1987.
-
(1987)
Ph.D. dissertation
-
-
French, C.A.1
-
6
-
-
0024014611
-
Signaling with special run length constraints for a digital recording channel
-
May
-
C. A. French, J. K. Wolf, and G. S. Dixon, “Signaling with special run length constraints for a digital recording channel,” IEEE Trans. Magn., vol. 24, pp. 2092–2097, May 1988.
-
(1988)
IEEE Trans. Magn.
, vol.24
, pp. 2092-2097
-
-
French, C.A.1
Wolf, J.K.2
Dixon, G.S.3
-
7
-
-
0019640247
-
Channel capacity of charge-constrained run-length limited codes
-
Nov.
-
K. Norris and D. S. Bloomberg, “Channel capacity of charge-constrained run-length limited codes,” IEEE Trans. Magn., vol. MAG-17, pp. 3452–3455, Nov. 1981.
-
(1981)
IEEE Trans. Magn.
, vol.MAG-17
, pp. 3452-3455
-
-
Norris, K.1
Bloomberg, D.S.2
-
8
-
-
84941872589
-
Does the binary symmetric channel with error probability 0.1 and (0, 1) input constraint have capacity 0.4021937655?
-
San Jose, CA, unpublished rep.
-
D. Larson and T. Howell, “Does the binary symmetric channel with error probability 0.1 and (0, 1) input constraint have capacity 0.4021937655?,” IBM Res., Almaden Res. Cen., San Jose, CA, unpublished rep., 1986.
-
(1986)
IBM Res., Almaden Res. Cen.
-
-
Larson, D.1
Howell, T.2
-
9
-
-
84940644968
-
A mathematical theory of communication
-
July
-
C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., no. 27, part 1, pp. 379–429, July 1948.
-
(1948)
Bell Syst. Tech. J.
, vol.27
, pp. 379-429
-
-
Shannon, C.E.1
-
10
-
-
84939359755
-
A note on the Shannon capacity of run-length-limited codes
-
July
-
J. J. Ashley and P. H. Siegel, “A note on the Shannon capacity of run-length-limited codes,” IEEE Trans. Inform. Theory, vol. IT-33, pp. 601–605, July 1987.
-
(1987)
IEEE Trans. Inform. Theory
, vol.IT-33
, pp. 601-605
-
-
Ashley, J.J.1
Siegel, P.H.2
-
12
-
-
0024735813
-
Extension of an entropy property for binary input memoryless symmetric channels
-
(Shitz) Sept.
-
N. Chayat and S. Shamai (Shitz), “Extension of an entropy property for binary input memoryless symmetric channels,” IEEE Trans. Inform. Theory, vol. 35, pp. 1077–1079, Sept. 1989.
-
(1989)
IEEE Trans. Inform. Theory
, vol.35
, pp. 1077-1079
-
-
Chayat, N.1
Shamai, S.2
-
13
-
-
0015681689
-
A theorem of the entropy of certain binary sequences and applications: Part I
-
Nov.
-
A. D. Wyner and J. Ziv, “A theorem of the entropy of certain binary sequences and applications: Part I,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 769–772, Nov. 1973.
-
(1973)
IEEE Trans. Inform. Theory
, vol.IT-19
, pp. 769-772
-
-
Wyner, A.D.1
Ziv, J.2
|