-
1
-
-
0016884170
-
Schwarz matrix properties for continuous discrete time systems
-
Jan.
-
B. D. O. Anderson, E. I. Jury, and M. Mansour. “Schwarz matrix properties for continuous discrete time systems,” Int. J. Contr., vol. 23, no. 1, pp. 1–16, Jan. 1976.
-
(1976)
Int. J. Contr.
, vol.23
, Issue.1
, pp. 1-16
-
-
Anderson, B.D.O.1
Jury, E.I.2
Mansour, M.3
-
2
-
-
0019065126
-
Model reduction of discrete time systems using the Schwarz canonical form
-
E. Badreddin and M. Manosur, “Model reduction of discrete time systems using the Schwarz canonical form,” Electron. Lett., vol. 16. pp. 782–783. 1980.
-
(1980)
Electron. Lett.
, vol.16
, pp. 782-783
-
-
Badreddin, E.1
Manosur, M.2
-
3
-
-
84909546689
-
A time scale method for model reduction of discrete time systems
-
Ph.D. dissertation, Eidgenossische Tech-nische Hochschulc (ETH), Zürich. Switzerland.
-
E. Badreddin, “A time scale method for model reduction of discrete time systems,” Ph.D. dissertation, Eidgenossische Tech-nische Hochschulc (ETH), Zürich. Switzerland. 1982.
-
(1982)
-
-
Badreddin, E.1
-
4
-
-
30444438811
-
A multivariable normal form for model reduction of discrete time systems
-
Feb.
-
E. Badreddin and M. Mansour, “A multivariable normal form for model reduction of discrete time systems,” Syst. Com. Lett., vol. 2. pp. 271–285, Feb. 1983.
-
(1983)
Syst. Com. Lett.
, vol.2
, pp. 271-285
-
-
Badreddin, E.1
Mansour, M.2
-
5
-
-
30444451975
-
A second multivariable normal form for model reduction of discrete time systems
-
—, “A second multivariable normal form for model reduction of discrete time systems,” Syst. Contr. Lett., vol. 4, pp. 109–117, 1984.
-
(1984)
Syst. Contr. Lett.
, vol.4
, pp. 109-117
-
-
-
6
-
-
0022719955
-
Model reduction of two dimensional discrete systems
-
May
-
E. I. Jury and K. Premaratne. “Model reduction of two dimensional discrete systems,” IEEE Trans. Circuit Syst., vol. CAS-33, pp. 558–562. May 1986.
-
(1986)
IEEE Trans. Circuit Syst.
, vol.CAS-33
, pp. 558-562
-
-
Jury, E.I.1
Premaratne, K.2
-
7
-
-
0021784320
-
Stability analysis for two dimensional systems via a Lyapunov approach
-
Jan.
-
W. S. Lu and E. B. Lee, “Stability analysis for two dimensional systems via a Lyapunov approach,” IEEE Trans. Circuits Syst., vol. CAS-32, pp. 61–68. Jan. 1985.
-
(1985)
IEEE Trans. Circuits Syst.
, vol.CAS-32
, pp. 61-68
-
-
Lu, W.S.1
Lee, E.B.2
-
8
-
-
84912459395
-
Canonical forms for linear multivariable systems
-
June
-
D. G. Luenberger, “Canonical forms for linear multivariable systems,” IEEE Trans. Automat. Contr., pp. 290–293, June 1967.
-
(1967)
IEEE Trans. Automat. Contr.
, pp. 290-293
-
-
Luenberger, D.G.1
-
9
-
-
84941520099
-
Model reduction of 2-D discrete systems
-
M.Sc. thesis. Dept. Elec. Comp. Eng., Univ. of Miami, Coral Gables. FL
-
K. Premaratne. “Model reduction of 2-D discrete systems,” M.Sc. thesis. Dept. Elec. Comp. Eng., Univ. of Miami, Coral Gables. FL, 1984.
-
(1984)
-
-
Premaratne, K.1
-
10
-
-
84941427531
-
Model reduction of two dimensional discrete time and delay systems
-
Univ. of Miami, Coral Gables, FL
-
K. Premaratne, “Model reduction of two dimensional discrete time and delay systems,” Doctoral dissertation. Dep. Elect. Comp. Eng., Univ. of Miami, Coral Gables, FL, 1988.
-
(1988)
Doctoral dissertation. Dep. Elect. Comp. Eng.
-
-
Premaratne, K.1
-
11
-
-
84941490616
-
An algorithm for model reduction of 2-D discrete time systems
-
to be published in IEEE Trans. Circuits Syst.
-
K. Premaratne, E. I. Jury, and M. Mansour. “An algorithm for model reduction of 2-D discrete time systems,” to be published in IEEE Trans. Circuits Syst.
-
-
-
Premaratne, K.1
Jury, E.I.2
Mansour, M.3
-
12
-
-
0016473439
-
A discrete state space model for linear image processing
-
Feb.
-
R. P. Roesser. “A discrete state space model for linear image processing,” IEEE Trans. Automat. Contr., vol. AC-20. pp. 1–10. Feb. 1975.
-
(1975)
IEEE Trans. Automat. Contr.
, vol.AC-20
, pp. 1-10
-
-
Roesser, R.P.1
|