메뉴 건너뛰기




Volumn 1, Issue 1, 1990, Pages 100-110

Self-Organizing Network for Optimum Supervised Learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER PROGRAMMING--ALGORITHMS; MATHEMATICAL STATISTICS--TIME SERIES ANALYSIS; PATTERN RECOGNITION;

EID: 0025399568     PISSN: 10459227     EISSN: 19410093     Source Type: Journal    
DOI: 10.1109/72.80209     Document Type: Article
Times cited : (54)

References (32)
  • 1
    • 0003645482 scopus 로고
    • Nonlinear signal processing using neural networks; Prediction and system modeling
    • A. Lapedes and R. Farber, “Nonlinear signal processing using neural networks; Prediction and system modeling,” TR LA-UR-87-2662, 1987.
    • (1987) TR LA-UR-87-2662
    • Lapedes, A.1    Farber, R.2
  • 2
    • 0003679958 scopus 로고
    • Probabilistic solution of inverse problems
    • Ph.D. dissertation, M.I.T., Cambridge, MA, Sept.
    • J. L. Marroquin, “Probabilistic solution of inverse problems,” Ph.D. dissertation, M.I.T., Cambridge, MA, Sept. 1985.
    • (1985)
    • Marroquin, J.L.1
  • 4
    • 0000515054 scopus 로고
    • From circuit to system theory
    • L. A. Zadeh, “From circuit to system theory,” Proc. IRE, vol. 50, pp. 856-865, 1962.
    • (1962) Proc. IRE , vol.50 , pp. 856-865
    • Zadeh, L.A.1
  • 5
    • 0015035795 scopus 로고
    • System identification—A survey
    • K. J. Åström and P. Eykhoff, “System identification—A survey,” Automatica, vol. 7, pp. 123-162, 1971.
    • (1971) Automatica , vol.7 , pp. 123-162
    • Åström, K.J.1    Eykhoff, P.2
  • 6
    • 0000475482 scopus 로고
    • A universal nonlinear filter, predictor and simulator which optimizes itself by a learning process
    • D. Garbor et al., “A universal nonlinear filter, predictor and simulator which optimizes itself by a learning process,” Proc. Inst. Elec. Eng., vol. 108B, pp. 422-438, 1961.
    • (1961) Proc. Inst. Elec. Eng. , vol.108B , pp. 422-438
    • Garbor, D.1
  • 7
    • 84885477347 scopus 로고
    • A learning technique for Volterra series representation
    • Dec.
    • R. J. Roy and J. Sherman, “A learning technique for Volterra series representation,” IEEE Trans. Automat. Contr., pp. 761-764, Dec. 1967.
    • (1967) IEEE Trans. Automat. Contr. , pp. 761-764
    • Roy, R.J.1    Sherman, J.2
  • 8
    • 0015142058 scopus 로고
    • Polynomial theory of complex systems
    • Oct.
    • A. G. Ivakhnenko, “Polynomial theory of complex systems,” IEEE Trans. Syst., Man, Cybern., vol. SMC-1, no. 4, pp. 364-378, Oct. 1971.
    • (1971) IEEE Trans. Syst., Man, Cybern. , vol.SMC-1 , Issue.4 , pp. 364-378
    • Ivakhnenko, A.G.1
  • 9
    • 0016483671 scopus 로고
    • A learning identification algorithm and its application to an environmental system
    • J. J. Duffy and M. A. Franklin, “A learning identification algorithm and its application to an environmental system,” IEEE Trans. Syst., Man, Cybern., vol. SMC-5, no. 2, pp. 226-240, 1975.
    • (1975) IEEE Trans. Syst., Man, Cybern. , vol.SMC-5 , Issue.2 , pp. 226-240
    • Duffy, J.J.1    Franklin, M.A.2
  • 10
    • 0016972878 scopus 로고
    • Sequential GMDH algorithm and its application to river flow prediction
    • July
    • S. Ikeda, M. Ochiai, and Y. Sawarogi, “Sequential GMDH algorithm and its application to river flow prediction,” IEEE Trans. Syst., Man, Cybern., vol. SMC-6, no. 7, pp. 473-479, July 1976.
    • (1976) IEEE Trans. Syst., Man, Cybern. , vol.SMC-6 , Issue.7 , pp. 473-479
    • Ikeda, S.1    Ochiai, M.2    Sawarogi, Y.3
  • 11
    • 0019056830 scopus 로고
    • Heuristics free group method of data handling algorithm of generating optimal partial polynomials with application to air pollution predication
    • H. Tamura and T. Kondo, “Heuristics free group method of data handling algorithm of generating optimal partial polynomials with application to air pollution predication,” Int. J. Syst. Sci., vol. 11, no. 9, pp. 1095-1111, 1980.
    • (1980) Int. J. Syst. Sci. , vol.11 , Issue.9 , pp. 1095-1111
    • Tamura, H.1    Kondo, T.2
  • 12
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, pp. 465-471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 13
    • 0021518209 scopus 로고
    • Stochatic relaxation, Gibbs distribution, and the Bayesian restoration of images
    • S. Geman and D. Geman, “Stochatic relaxation, Gibbs distribution, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine Intellig., vol. PAMI-6, pp. 721-741, 1984.
    • (1984) IEEE Trans. Pattern Anal. Machine Intellig. , vol.PAMI-6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 14
    • 0001886167 scopus 로고
    • Fast learning in multiresolution hierarchies
    • D. S. Touretzky, Ed.
    • J. Moody, “Fast learning in multiresolution hierarchies,” in Advances in Neural Information Processing Systems I, D. S. Touretzky, Ed. 1989, pp. 29-39.
    • (1989) Advances in Neural Information Processing Systems I , pp. 29-39
    • Moody, J.1
  • 15
    • 0000991092 scopus 로고
    • Comparing biases for minimal network construction with backpropagation
    • D. S. Touretzky, Ed.
    • S. J. Hansen and Y. Pratt, “Comparing biases for minimal network construction with backpropagation,” in Advances in Neural Information Processing Systems I, D. S. Touretzky, Ed. 1989, pp. 177-185.
    • (1989) Advances in Neural Information Processing Systems I , pp. 177-185
    • Hansen, S.J.1    Pratt, Y.2
  • 16
    • 0003093019 scopus 로고
    • Consistent order estimation of autoregression processes by shortest description of data
    • Jacobs et al., Eds. New York: Academic.
    • J. Rissanen, “Consistent order estimation of autoregression processes by shortest description of data,” in Analysis and Optimization of Stochastic System, Jacobs et al., Eds. New York: Academic, 1980.
    • (1980) Analysis and Optimization of Stochastic System
    • Rissanen, J.1
  • 17
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • J. Rissanen, “A universal prior for integers and estimation by minimum description length,” Annu. Statist., vol. 11, no. 2, pp. 416-431, 1983.
    • (1983) Annu. Statist. , vol.11 , Issue.2 , pp. 416-431
    • Rissanen, J.1
  • 18
    • 0022807153 scopus 로고
    • Maximum entropy as a special case of the minimum description length criterion
    • Nov.
    • M. Feder, “Maximum entropy as a special case of the minimum description length criterion,” IEEE Trans. Inform. Theory, vol. IT-32, no. 6, pp. 847-849, Nov. 1986.
    • (1986) IEEE Trans. Inform. Theory , vol.IT-32 , Issue.6 , pp. 847-849
    • Feder, M.1
  • 19
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Dec.
    • H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr., vol. AC-19, no. 6, pp. 716-722, Dec. 1974.
    • (1974) IEEE Trans. Automat. Contr. , vol.AC-19 , Issue.6 , pp. 716-722
    • Akaike, H.1
  • 20
    • 0343421242 scopus 로고
    • Automatic data structure search by the maximum like-hood
    • 5th Hawaii Int. Conf. Syst.
    • H. Akaike, “Automatic data structure search by the maximum like-hood,” in Proc. Comput. Biomed. Suppl., 5th Hawaii Int. Conf. Syst., 1972, pp. 99-101.
    • (1972) Proc. Comput. Biomed. Suppl. , pp. 99-101
    • Akaike, H.1
  • 21
    • 84909753003 scopus 로고
    • Inconsistency of AIC rule
    • R. L. Kashyap, “Inconsistency of AIC rule,” IEEE Trans. Automat. Contr., vol. AC-25, no. 5, pp. 997-998, 1980.
    • (1980) IEEE Trans. Automat. Contr. , vol.AC-25 , Issue.5 , pp. 997-998
    • Kashyap, R.L.1
  • 22
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • May
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, pp. 671-680, May 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 24
    • 34249982739 scopus 로고
    • Predicting chaotic time series
    • J. D. Farmer and J. J. Sidorowich, “Predicting chaotic time series,” Phys. Rev. Lett., vol. 59, no. 8, pp. 845-848, 1987.
    • (1987) Phys. Rev. Lett. , vol.59 , Issue.8 , pp. 845-848
    • Farmer, J.D.1    Sidorowich, J.J.2
  • 26
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control system
    • M. Mackey and L. Glass, “Oscillation and chaos in physiological control system,” Science, pp. 197-287, 1977.
    • (1977) Science , pp. 197-287
    • Mackey, M.1    Glass, L.2
  • 28
    • 0000779360 scopus 로고
    • Detecting strange attractor in turbulence
    • D. Rand, L. Young, Eds. Berlin, West Germany: Springer Verlag.
    • F. Takens, “Detecting strange attractor in turbulence,” in Lecture Notes in Mathematics, vol. 898, D. Rand, L. Young, Eds. Berlin, West Germany: Springer Verlag, 1981, p. 366.
    • (1981) Lecture Notes in Mathematics , vol.898 , pp. 366
    • Takens, F.1
  • 30
    • 0023982825 scopus 로고
    • Note on contrast measure and polynomial classifiers
    • Mar.
    • J. L. C. Sanz and E. B. Hinkle, “Note on contrast measure and polynomial classifiers,” in Proc. IEEE, vol. 76, no. 3, pp. 256-259, Mar. 1988.
    • (1988) Proc. IEEE , vol.76 , Issue.3 , pp. 256-259
    • Sanz, J.L.C.1    Hinkle, E.B.2
  • 31
    • 82955170227 scopus 로고
    • How neural networks work
    • TR LA-UR-88-418.
    • A. Lapedes and R. Farber, “How neural networks work,” TR LA-UR-88-418, 1987.
    • (1987)
    • Lapedes, A.1    Farber, R.2
  • 32
    • 0003363509 scopus 로고
    • Self-organizing neural network for the identification problem
    • D. S. Touretzky, Ed.
    • M. F. M. Tenorio and W.-T. Lee, “Self-organizing neural network for the identification problem,” in Advances in Neural Information Processing Systems I, D. S. Touretzky, Ed. 1989, pp. 57-64.
    • (1989) Advances in Neural Information Processing Systems I , pp. 57-64
    • Tenorio, M.F.M.1    Lee, W.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.