-
1
-
-
0023177348
-
Simulation of matched-field processing in a deep-water Pacific environment
-
‘M. B. Porter, R. L. Dicus, and R. G. Fizell, “Simulation of matched-field processing in a deep-water Pacific environment,” IEEE J. Ocean. Eng. OE-12, 173–181 (1987).
-
(1987)
IEEE J. Ocean. Eng
, vol.OE-12
, pp. 173-181
-
-
Porter, M.B.1
Dicus, R.L.2
Fizell, R.G.3
-
2
-
-
0023588406
-
Underwater acoustic model-based signal processing
-
ASSP-35
-
L. J. Ziomek, “Underwater acoustic model-based signal processing,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1670–1683 (1987).
-
(1987)
IEEE Trans. Acoust. Speech Signal Process
, pp. 1670-1683
-
-
Ziomek, L.J.1
-
3
-
-
0015762716
-
Line array performance when the signal coherence is spatially dependent
-
H. Cox, “Line array performance when the signal coherence is spatially dependent,”!. Acoust. Soc. Am. 54, 1743–1746 (1973).
-
(1973)
!. Acoust. Soc. Am
, vol.54
, pp. 1743-1746
-
-
Cox, H.1
-
4
-
-
0015038198
-
Optimum and conventional detection using a linear array
-
J. B. Lewis and P. M. Schultheiss, “Optimum and conventional detection using a linear array,” J. Acoust. Soc. Am. 49, 1083–1091 (1971).
-
(1971)
J. Acoust. Soc. Am
, vol.49
, pp. 1083-1091
-
-
Lewis, J.B.1
Schultheiss, P.M.2
-
5
-
-
0003462953
-
Detection, Estimation, and Modulation Theory: Part I
-
Wiley, New York
-
H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part I (Wiley, New York, 1968), pp. 96–116.
-
(1968)
, pp. 96-116
-
-
Van Trees, H.L.1
-
6
-
-
0003987450
-
Threshold Signals
-
McGraw-Hill, New York
-
J. L. Lawson and G. E. Uhlenbeck, Threshold Signals (McGraw-Hill, New York, 1950).
-
(1950)
-
-
Lawson, J.L.1
Uhlenbeck, G.E.2
-
7
-
-
0009867612
-
Optimum arrays and the Schwartz inequality
-
H. Cox, “Optimum arrays and the Schwartz inequality,” J. Acoust. Soc. Am. 45, 228–232 (1969).
-
(1969)
J. Acoust. Soc. Am
, vol.45
, pp. 228-232
-
-
Cox, H.1
-
8
-
-
84953701180
-
Spatial processing in the presence of a random signal and noise field
-
Bell Laboratories Ocean Systems Technology Paper OSTP-17 AJC, 13 March
-
A. J. Claus, “Spatial processing in the presence of a random signal and noise field,” Bell Laboratories, Ocean Systems Technology Paper OSTP-17 AJC, 13 March 1974.
-
(1974)
-
-
Claus, A.J.1
-
9
-
-
26444491493
-
A reduced-complexity quadratic structure for the detection of stochastic signals
-
H. V. Poor and C.-I. Chang, “A reduced-complexity quadratic structure for the detection of stochastic signals,” J. Acoust. Soc. Am. 78, 1652-1657 (1985).
-
(1985)
J. Acoust. Soc. Am
, vol.78
, pp. 1652-1657
-
-
Poor, H.V.1
Chang, C.-I.2
-
11
-
-
0021892634
-
Path-integral treatment of acoustic mutual coherence functions for rays in a sound channel
-
R. Dashen, S. M. Flatte, and S. A. Reynolds, “Path-integral treatment of acoustic mutual coherence functions for rays in a sound channel,” J. Acoust. Soc. Am. 77, 1716–1722 (1985).
-
(1985)
J. Acoust. Soc. Am
, vol.77
, pp. 1716-1722
-
-
Dashen, R.1
Flatte, S.M.2
Reynolds, S.A.3
-
12
-
-
0022558316
-
Measurement of down-slope sound propagation from a shallow source to a deep ocean receiver
-
W. M. Carey, “Measurement of down-slope sound propagation from a shallow source to a deep ocean receiver,” J. Acoust. Soc. Am. 79, 49–59 (1986).
-
(1986)
J. Acoust. Soc. Am
, vol.79
, pp. 49-59
-
-
Carey, W.M.1
-
13
-
-
84967868084
-
Measurement of sound propagation downslope to a bottom-limited sound channel
-
W. M. Carey, I. B. Gereben, and B. A. Brunson, “Measurement of sound propagation downslope to a bottom-limited sound channel,” J. Acoust. Soc. Am. 81, 244–257 (1987).
-
(1987)
J. Acoust. Soc. Am
, vol.81
, pp. 244-257
-
-
Carey, W.M.1
Gereben, I.B.2
Brunson, B.A.3
-
14
-
-
0015431807
-
On the asymptotic eigenvalue distribution of Toeplitz matrices
-
R. M. Gray, “On the asymptotic eigenvalue distribution of Toeplitz matrices,” IEEE Trans. Inf. Theory IT-18, 725–730 (1972).
-
(1972)
IEEE Trans. Inf. Theory IT
, vol.18
, pp. 725-730
-
-
Gray, R.M.1
-
15
-
-
84953701181
-
The small-signal condition σ2s≪σ2n/M follows from Eq. (4), but is not really required here: In this special case, the optimal small-signal
-
matrix is in fact proportional to the general optimal matrix (3), as can be easily shown using Woodbury's identity to express the inverse.
-
The small-signal condition σ2s≪σ2n/M follows from Eq. (4), but is not really required here: In this special case, the optimal small-signal matrix is in fact proportional to the general optimal matrix (3), as can be easily shown using Woodbury's identity to express the inverse.
-
-
-
-
16
-
-
84953701182
-
For any two dimensionally-compatible matrices A and B, tr(AB) = tr(BA)
-
For any two dimensionally-compatible matrices A and B, tr(AB) = tr(BA).
-
-
-
-
17
-
-
84953701183
-
Note that the small-signal condition σ2s≪σ2n/||C|| could require that the instantaneous
-
output SNR be much less than unity for high coherence where| |C||≃M. However, this assumption is usually valid for practical systems where significant post-beamforming integration is employed to boost the output SNR
-
Note that the small-signal condition σ2s≪σ2n/||C|| could require that the instantaneous, output SNR be much less than unity for high coherence where| |C||≃M. However, this assumption is usually valid for practical systems where significant post-beamforming integration is employed to boost the output SNR.
-
-
-
-
18
-
-
84953701184
-
Incoherent beam averaging in multipath environments
-
unpublished work
-
J. Goldman, “Incoherent beam averaging in multipath environments” (unpublished work, 1980).
-
(1980)
-
-
Goldman, J.1
-
19
-
-
84913247825
-
On a moment theorem for complex Gaussian processes
-
Theory IT-8
-
I. S. Reed, “On a moment theorem for complex Gaussian processes,” IRE Trans. Inf. Theory IT-8, 194–195 (1962).
-
(1962)
IRE Trans. Inf
, pp. 194-195
-
-
Reed, I.S.1
-
20
-
-
0005473713
-
Optimum quadratic detection of a random vector in Gaussian noise
-
COM-14
-
C. R. Baker, “Optimum quadratic detection of a random vector in Gaussian noise,” IEEE Trans. Commun. COM-14, 802–805 (1966).
-
(1966)
IEEE Trans. Commun
, pp. 802-805
-
-
Baker, C.R.1
|