메뉴 건너뛰기




Volumn 19, Issue 8-9, 1990, Pages 147-161

Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations

Author keywords

[No Author keywords available]

Indexed keywords

FLUID DYNAMICS;

EID: 0025210711     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/0898-1221(90)90271-K     Document Type: Article
Times cited : (1804)

References (14)
  • 1
    • 0025229330 scopus 로고
    • Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—I. Surface approximations and partial derivative estimates
    • (1990) Computers Math. Applic. , vol.19 , Issue.8-9 , pp. 127-145
    • Kansa1
  • 2
    • 84968515237 scopus 로고
    • Scattered data interpolation: test of some other methods
    • (1982) Math. Comput. , vol.38 , pp. 181-200
    • Franke1
  • 3
    • 84915343640 scopus 로고    scopus 로고
    • R. L. Hardy, Multiquadric equations of topography and other irregular surfaces. J. geophys. Res.176, 1905–1915.
  • 4
    • 0016656294 scopus 로고
    • Research results in the application of multiquadratic equations to surveying and mapping problems
    • (1975) Surv. Mapp. , vol.35 , pp. 321-332
    • Hardy1
  • 6
    • 34250122797 scopus 로고
    • Interpolation of scattered data: distance matrices and conditionally positive definite functions
    • (1986) Constr. Approx. , vol.2 , pp. 11-22
    • Micchelli1
  • 7
    • 84915343639 scopus 로고    scopus 로고
    • W. R. Madych and S. A. Nelson, Multivariate interpolation: a variational theory. J. Approx. Theory Applic. (in press).
  • 12
    • 0012672225 scopus 로고
    • The contraction number of a multigrid method for solving the Poisson equation
    • (1981) Numer. Math. , vol.37 , pp. 387-404
    • Braess1
  • 13
    • 84966218274 scopus 로고
    • The convergence rate of a multigrid method relaxation for the Poisson equation with Gauss-Seidel relaxation for the Poisson equation
    • (1984) Math. Comput. , vol.42 , pp. 505-519
    • Braess1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.