메뉴 건너뛰기




Volumn 36, Issue 4, 1989, Pages 929-965

Learnability and the Vapnik-Chervonenkis Dimension

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER PROGRAMMING--ALGORITHMS; PATTERN RECOGNITION;

EID: 0024750852     PISSN: 00045411     EISSN: 1557735X     Source Type: Journal    
DOI: 10.1145/76359.76371     Document Type: Article
Times cited : (1455)

References (69)
  • 2
    • 0023453626 scopus 로고
    • Learning regular sets from queries and counterexamples
    • ANGLUIN, D. Learning regular sets from queries and counterexamples. Inf. Comput. 75 (1987), 87-106.
    • (1987) Inf. Comput. , vol.75 , pp. 87-106
    • ANGLUIN, D.1
  • 3
    • 0000710299 scopus 로고
    • Queries and concept learning
    • ANGLUIN, D. Queries and concept learning. Mach. Learning 2, 2 (1988), 319-342.
    • (1988) Mach. Learning , vol.2 , Issue.2 , pp. 319-342
    • ANGLUIN, D.1
  • 4
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • ANGLUIN, D., AND LAIRD, P. D. Learning from noisy examples. Mach. Learning 2, 2 (1988), 343-370.
    • (1988) Mach. Learning , vol.2 , Issue.2 , pp. 343-370
    • ANGLUIN, D.1    LAIRD, P.D.2
  • 5
    • 0018454769 scopus 로고
    • Fast probabilistic algorithms for Hamiltonian circuits and matchings
    • ANGLUIN, D., AND VALIANT, L. Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comput. Syst. Sci. 19 (1979), 155-193.
    • (1979) J. Comput. Syst. Sci. , vol.19 , pp. 155-193
    • ANGLUIN, D.1    VALIANT, L.2
  • 6
    • 84976709041 scopus 로고
    • Densité et Dimension. Ann. Inst. Fourier, Grenoble 33, 3 (
    • ASSOUAD, P. Densité et Dimension. Ann. Inst. Fourier, Grenoble 33, 3 (1983), 233-282.
    • (1983) , pp. 233-282
    • ASSOUAD, P.1
  • 7
    • 0001160588 scopus 로고
    • What size net gives valid generalization
    • BAUM, E., AND HAUSSLER, D. What size net gives valid generalization. Neural Comput. I, 1 (1989) 151-160.
    • (1989) Neural Comput. I , vol.1 , pp. 151-160
    • BAUM, E.1    HAUSSLER, D.2
  • 8
    • 17644396960 scopus 로고    scopus 로고
    • A parameterization scheme for classifying models of learnability. In Proceedings of the 2nd Workshop of Computational Learning Theory (Santa Cruz, Calif., July 31-Aug. 2). Morgan Kaufman, San Mateo, Calif., 1989, to appear
    • BEN-DAVID, S., BENEDEK, G., AND MANSOUR, Y. A parameterization scheme for classifying models of learnability. In Proceedings of the 2nd Workshop of Computational Learning Theory (Santa Cruz, Calif., July 31-Aug. 2). Morgan Kaufman, San Mateo, Calif., 1989, to appear.
    • BEN-DAVID, S.1    BENEDEK, G.2    MANSOUR, Y.3
  • 10
    • 85051131411 scopus 로고
    • Training a 3-node neural network is NP-complete
    • (Cambridge, Mass., Aug. 3-5). Morgan Kaufmann, San Mateo, Calif.
    • BLUM, A., AND RIVEST, R. Training a 3-node neural network is NP-complete. In Proceedings of the 1st Workshop on Computational Learning Theory (Cambridge, Mass., Aug. 3-5). Morgan Kaufmann, San Mateo, Calif., 1988, pp.9-18.
    • (1988) Proceedings of the 1st Workshop on Computational Learning Theory , pp. 9-18
    • BLUM, A.1    RIVEST, R.2
  • 12
    • 84976808877 scopus 로고
    • BOLLOBÁS, B. Combinatorics. Cambridge Univ. Press, Cambridge, Mass
    • BOLLOBÁS, B. Combinatorics. Cambridge Univ. Press, Cambridge, Mass., 1986.
    • (1986)
  • 13
    • 0039115187 scopus 로고
    • Some remarks about space-complexity of learning and circuit complexity of recognizing
    • (Cambridge, Mass., Aug. 3-5). Morgan Kaufmann, San Mateo, Calif
    • BOUCHERON, S., AND SALLANTIN, J. Some remarks about space-complexity of learning and circuit complexity of recognizing. In Proceedings of the 1st Workshop on Computational Learning Theory (Cambridge, Mass., Aug. 3-5). Morgan Kaufmann, San Mateo, Calif., 1988, pp. 125-138.
    • (1988) Proceedings of the 1st Workshop on Computational Learning Theory , pp. 125-138
    • BOUCHERON, S.1    SALLANTIN, J.2
  • 14
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications to pattern recognition
    • COVER, T. Geometrical and statistical properties of systems of linear inequalities with applications to pattern recognition. IEEE Trans. Elect. Comp. 14 (1965), 326-334.
    • (1965) IEEE Trans. Elect. Comp. , vol.14 , pp. 326-334
    • COVER, T.1
  • 15
    • 0024053797 scopus 로고
    • Automatic pattern recognition: A study of the probability of error
    • DEVROYE, L. P. Automatic pattern recognition: A study of the probability of error. IEEE Trans. Pattern Analysis and Mach. Intell. 10, 4 (1988), 530-543.
    • (1988) IEEE Trans. Pattern Analysis and Mach. Intell. , vol.10 , Issue.4 , pp. 530-543
    • DEVROYE, L.P.1
  • 16
    • 30244452310 scopus 로고
    • A distribution-free performance bound in error estimation
    • DEVROYE, L. P., AND WAGNER, T. J. A distribution-free performance bound in error estimation. IEEE Trans. Inf. Theorem 22 (1976), 586-587.
    • (1976) IEEE Trans. Inf. Theorem , vol.22 , pp. 586-587
    • DEVROYE, L.P.1    WAGNER, T.J.2
  • 18
    • 0006772472 scopus 로고
    • A course on empirical processes
    • vol. 1097. Springer-Verlag, New York
    • DUDLEY, R. M. A course on empirical processes. In Lecture Notes in Mathematics, vol. 1097. Springer-Verlag, New York, 1984.
    • (1984) Lecture Notes in Mathematics
    • DUDLEY, R.M.1
  • 19
    • 0001605679 scopus 로고
    • Universal Donsker classes and metric entropy
    • DUDLEY, R. M. Universal Donsker classes and metric entropy. Ann. Prob. 15, 4 (1987), 1306-1326.
    • (1987) Ann. Prob. , vol.15 , Issue.4 , pp. 1306-1326
    • DUDLEY, R.M.1
  • 20
  • 21
  • 23
    • 0000595574 scopus 로고
    • Probabilistic Turing machines
    • GILL, J. Probabilistic Turing machines. SIAM J. Comput. 6, 4 (1977), 675-695.
    • (1977) SIAM J. Comput. , vol.6 , Issue.4 , pp. 675-695
    • GILL, J.1
  • 24
    • 84976842658 scopus 로고
    • GINÉ, E., AND ZINN, J. Lectures on the central limit theorem for empirical processes. In Lecture Notes in Mathematics, vol. 1221. Springer-Verlag, New York
    • GINÉ, E., AND ZINN, J. Lectures on the central limit theorem for empirical processes. In Lecture Notes in Mathematics, vol. 1221. Springer-Verlag, New York, 1986.
    • (1986)
  • 25
    • 0022793132 scopus 로고
    • How to construct random functions
    • ACM 33, 4 (Oct
    • GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to construct random functions. J. ACM 33, 4 (Oct. 1986), 792-807.
    • (1986) J , pp. 792-807
    • GOLDREICH, O.1    GOLDWASSER, S.2    MICALI, S.3
  • 26
    • 0022624923 scopus 로고
    • Linear Function neurons: Structure and training
    • HAMPSON, S. E., AND VOLPER, D. Linear Function neurons: Structure and training. Biol. Cyber. 53 (1986), 203-217.
    • (1986) Biol. Cyber. , vol.53 , pp. 203-217
    • HAMPSON, S.E.1    VOLPER, D.2
  • 27
    • 2542455833 scopus 로고
    • Learning conjunctive concepts in structural domains
    • HAUSSLER, D. Learning conjunctive concepts in structural domains. Mach. Learning 4, 1 (1989)
    • (1989) Mach. Learning , vol.4 , Issue.1
    • HAUSSLER, D.1
  • 28
    • 84976689935 scopus 로고
    • Applying Valiant't learning framework to AI concept learning problems. In Proceedings of the 4th International Workshop on Machine Learning. Morgan Kaufmann, San Mateo, Calif
    • HAUSSLER, D. Applying Valiant't learning framework to AI concept learning problems. In Proceedings of the 4th International Workshop on Machine Learning. Morgan Kaufmann, San Mateo, Calif., 1987, pp. 324-336.
    • (1987) , pp. 324-336
    • HAUSSLER, D.1
  • 29
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant't learning framework
    • HAUSSLER, D. Quantifying inductive bias: AI learning algorithms and Valiant't learning framework. Artif. Intell. 36 (1988), 177-221.
    • (1988) Artif. Intell. , vol.36 , pp. 177-221
    • HAUSSLER, D.1
  • 30
    • 0024766393 scopus 로고    scopus 로고
    • Generalizing the PAC model: Sample size bounds from metric dimension-based uniform convergence results. In Proceedings of the 30th IEEE Symposium on Foundations of Computer Science (Research Triangle Park, N.C., Oct. 30-Nov. 1). IEEE, New York, 1989, to appear
    • HAUSSLER, D. Generalizing the PAC model: Sample size bounds from metric dimension-based uniform convergence results. In Proceedings of the 30th IEEE Symposium on Foundations of Computer Science (Research Triangle Park, N.C., Oct. 30-Nov. 1). IEEE, New York, 1989, to appear.
    • HAUSSLER, D.1
  • 31
    • 15744365331 scopus 로고
    • Epsilon-nets and simplex range queries. Disc. Comput. Geometry 2 (
    • HAUSSLER, D., AND WELZL, E. Epsilon-nets and simplex range queries. Disc. Comput. Geometry 2 (1987), 127-151.
    • (1987) , pp. 127-151
    • HAUSSLER, D.1    WELZL, E.2
  • 32
    • 84976750257 scopus 로고
    • Equivalence of models for polynomial learnability. Tech. Rep. UCSC-CRL-88-06. Univ. California at Santa Cruz, Santa Cruz, Calif
    • HAUSSLER, D., KEARNS, M., LITTLESTONE, N., AND WARMUTH, M. K. Equivalence of models for polynomial learnability. Tech. Rep. UCSC-CRL-88-06. Univ. California at Santa Cruz, Santa Cruz, Calif., 1988.
    • (1988)
    • HAUSSLER, D.1    KEARNS, M.2    LITTLESTONE, N.3    WARMUTH, M.K.4
  • 33
    • 0024137232 scopus 로고
    • Predicting {0, 1}-functions on randomly drawn points. In Proceedings of the 29th IEEE Symposium on Foundations of Computer Science (White Plains, N.Y., Oct.). IEEE, New York
    • HAUSSLER, D., LITTLESTONE, N., AND WARMUTH, M. K. Predicting {0, 1}-functions on randomly drawn points. In Proceedings of the 29th IEEE Symposium on Foundations of Computer Science (White Plains, N.Y., Oct.). IEEE, New York, 1988, pp. 100-109.
    • (1988) , pp. 100-109
    • HAUSSLER, D.1    LITTLESTONE, N.2    WARMUTH, M.K.3
  • 34
    • 0016349356 scopus 로고
    • Approximation algorithms for combinatorial problems
    • JOHNSON, D. S. Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9 (1974), 256-278.
    • (1974) J. Comput. Syst. Sci. , vol.9 , pp. 256-278
    • JOHNSON, D.S.1
  • 35
    • 51249181779 scopus 로고
    • A new polynomial-time algorithm for linear programming
    • KARMARKAR, N. A new polynomial-time algorithm for linear programming. Combinatorica 4 (1984), 373-395.
    • (1984) Combinatorica , vol.4 , pp. 373-395
    • KARMARKAR, N.1
  • 36
    • 33646761263 scopus 로고
    • Learning in the presence of malicious errors
    • (Chicago, III., May 2-4). ACM, New York
    • KEARNS, M., AND LI, M. Learning in the presence of malicious errors. In Proceedings of the 20th Symposium on Theory of Computing (Chicago, III., May 2-4). ACM, New York, 1988, pp. 267-280.
    • (1988) Proceedings of the 20th Symposium on Theory of Computing , pp. 267-280
    • KEARNS, M.1    LI, M.2
  • 37
    • 0024863228 scopus 로고
    • Cryptographic limitations on learning Boolean formulae and finite automata
    • (Seattle, Wash., May 15-17). ACM, New York
    • KEARNS, M., AND VALIANT, L. Cryptographic limitations on learning Boolean formulae and finite automata. In Proceedings of the 21st ACM Symposium on Theory of Computing (Seattle, Wash., May 15-17). ACM, New York, 1989, pp. 433-444.
    • (1989) Proceedings of the 21st ACM Symposium on Theory of Computing , pp. 433-444
    • KEARNS, M.1    VALIANT, L.2
  • 41
    • 84976740431 scopus 로고
    • Learning from good data and bad. Tech. Rep. YALEU/DCS/TR-551. Yale Univ., New Haven, Conn
    • LAIRD, P. D. Learning from good data and bad. Tech. Rep. YALEU/DCS/TR-551. Yale Univ., New Haven, Conn., 1987.
    • (1987)
    • LAIRD, P.D.1
  • 42
    • 0021626446 scopus 로고
    • Computational geometry-A survey
    • LEE, D. T., AND PREPARATA, F. P. Computational geometry-A survey. IEEE Trans. Comput. 33, 12 (1984), 1072-1101.
    • (1984) IEEE Trans. Comput. , vol.33 , Issue.12 , pp. 1072-1101
    • LEE, D.T.1    PREPARATA, F.P.2
  • 43
    • 0024135612 scopus 로고
    • 4L LINIAL, N., MANSOUR, Y., AND RIVEST, R. Results on learnability and the Vapnik-Chervonenkis dimension. In Proceedings of the 29th IEEE Symposium on Foundations of Computer Science (White Plains, N.Y., Oct.). IEEE, New York
    • 4L LINIAL, N., MANSOUR, Y., AND RIVEST, R. Results on learnability and the Vapnik-Chervonenkis dimension. In Proceedings of the 29th IEEE Symposium on Foundations of Computer Science (White Plains, N.Y., Oct.). IEEE, New York, 1988, pp. 120-129.
    • (1988) , pp. 120-129
  • 44
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • LITTLESTONE, N. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Mach. Learning 2, 2 (1988), 285-318.
    • (1988) Mach. Learning , vol.2 , Issue.2 , pp. 285-318
    • LITTLESTONE, N.1
  • 45
    • 84976664145 scopus 로고    scopus 로고
    • -complete set cover problems. MIT Laboratory for Computer Science, unpublished manuscript
    • MASEK, W. J. Some NP-complete set cover problems. MIT Laboratory for Computer Science, unpublished manuscript.
    • MASEK, W.J.1    Some, N.P.2
  • 46
    • 84976741814 scopus 로고
    • Linear programming in linear time when the dimension is fixed
    • (Jan
    • MEGIDDO, N. Linear programming in linear time when the dimension is fixed. J. ACM 31, 1 (Jan. 1984), 114-127.
    • (1984) J. ACM , vol.31 , Issue.1 , pp. 114-127
    • MEGIDDO, N.1
  • 47
    • 0000832228 scopus 로고
    • On the complexity of polyhedral separability
    • MEGIDDO, N. On the complexity of polyhedral separability. Discrete Comput. Geometry 3 (1988), 325-337.
    • (1988) Discrete Comput. Geometry , vol.3 , pp. 325-337
    • MEGIDDO, N.1
  • 50
    • 84976672684 scopus 로고
    • Learning functions from examples. Tech. Rep. CMU-RI-TR-87-19. Carnegie Mellon Univ., Pittsburgh, Pa., Aug
    • NATARAJAN, B. K. Learning functions from examples. Tech. Rep. CMU-RI-TR-87-19. Carnegie Mellon Univ., Pittsburgh, Pa., Aug. 1987.
    • (1987)
    • NATARAJAN, B.K.1
  • 52
    • 0018058024 scopus 로고
    • On the connection between the complexity and credibility of inferred models
    • PEARL, J. On the connection between the complexity and credibility of inferred models. Int. J. Gen. Syst. 4 (1978), 255-264.
    • (1978) Int. J. Gen. Syst. , vol.4 , pp. 255-264
    • PEARL, J.1
  • 53
    • 0018530407 scopus 로고
    • Capacity and error estimates for Boolean classifiers with limited capacity
    • PEARL, J. Capacity and error estimates for Boolean classifiers with limited capacity. IEEE Trans. Pattern Analysis Mach. Intell. 1, 4 (1979), 350-355.
    • (1979) IEEE Trans. Pattern Analysis Mach. Intell. , vol.1 , Issue.4 , pp. 350-355
    • PEARL, J.1
  • 54
    • 0024092215 scopus 로고
    • Computational limitations on learning from examples
    • (Oct
    • PITT, L., AND VALIANT, L. G. Computational limitations on learning from examples. J. ACM 35, 4 (Oct. 1988), 965-984.
    • (1988) J. ACM , vol.35 , Issue.4 , pp. 965-984
    • PITT, L.1    VALIANT, L.G.2
  • 55
    • 0023672752 scopus 로고
    • Reductions among prediction problems, on the difficulty of predicting automata
    • (Washington, D.C.). IEEE, New York
    • PITT, L., AND WARMUTH, M. Reductions among prediction problems, on the difficulty of predicting automata. In Proceedings of the 3rd IEEE Structure in Complexity Theory Conference (Washington, D.C.). IEEE, New York, 1988, pp. 62-69.
    • (1988) Proceedings of the 3rd IEEE Structure in Complexity Theory Conference , pp. 62-69
    • PITT, L.1    WARMUTH, M.2
  • 57
    • 84976745116 scopus 로고    scopus 로고
    • Inferring decision trees using the minimum description length principle
    • to appear
    • QUINLAN, R., AND RIVEST, R. Inferring decision trees using the minimum description length principle. Inf. Comput., to appear.
    • Inf. Comput.
    • QUINLAN, R.1    RIVEST, R.2
  • 58
    • 1442267080 scopus 로고
    • Learning decision-lists
    • RIVEST, R. Learning decision-lists. Mach. Learning 2, 3 (1987), 229-246.
    • (1987) Mach. Learning , vol.2 , Issue.3 , pp. 229-246
    • RIVEST, R.1
  • 59
    • 0003655416 scopus 로고
    • 2nd ed. MacMillan, New York
    • ROYDEN, H. L. Real Analysis, 2nd ed. MacMillan, New York, 1968.
    • (1968) Real Analysis
    • ROYDEN, H.L.1
  • 60
    • 85032870186 scopus 로고
    • Types of noise in data for concept learning
    • (Cambridge, Mass., Aug. 3-5). Morgan Kaufmann, San Mateo, Calif
    • SLOAN, R. Types of noise in data for concept learning. In Proceedings of the 1st Workshop on Computational Learning Theory (Cambridge, Mass., Aug. 3-5). Morgan Kaufmann, San Mateo, Calif., 1988, pp. 91-96.
    • (1988) Proceedings of the 1st Workshop on Computational Learning Theory , pp. 91-96
    • SLOAN, R.1
  • 61
    • 0021518106 scopus 로고
    • A theory of the learnable
    • (Nov
    • VALIANT, L. G. A theory of the learnable. Commun. ACM 27, 11 (Nov. 1984), 1134-1142.
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • VALIANT, L.G.1
  • 62
    • 0002202594 scopus 로고
    • Learning disjunctions of conjunctions
    • (Los Angeles, Calif., Aug.), vol. 1. Morgan Kaufmann, San Mateo, Calif
    • VALIANT, L. G. Learning disjunctions of conjunctions. In Proceedings of the 9th International Conference on Artificial Intelligence (Los Angeles, Calif., Aug.), vol. 1. Morgan Kaufmann, San Mateo, Calif., 1985, pp. 560-566.
    • (1985) Proceedings of the 9th International Conference on Artificial Intelligence , pp. 560-566
    • VALIANT, L.G.1
  • 64
    • 84976817261 scopus 로고
    • YA. On the uniform convergence of relative frequencies of events to their probabilities. Theoret. Probl. and Its Appl. 16, 2 (
    • VAPNIK, V. N., AND CHERVONENKIS, A. YA. On the uniform convergence of relative frequencies of events to their probabilities. Theoret. Probl. and Its Appl. 16, 2 (1971), 264-280.
    • (1971) , pp. 264-280
    • VAPNIK, V.N.1    CHERVONENKIS, A.2
  • 65
    • 84976788133 scopus 로고
    • YA. Theory of Pattern Recognition (in Russian). Nauka, Moscow
    • VAPNIK, V. N., AND CHERVONENKIS, A. YA. Theory of Pattern Recognition (in Russian). Nauka, Moscow, 1974.
    • (1974)
    • VAPNIK, V.N.1    CHERVONENKIS, A.2
  • 67
    • 0012885584 scopus 로고
    • Pattern recognition as information compression
    • Ed. Academic Press, Orlando, Fla
    • WATANABE, S. Pattern recognition as information compression. In Frontiers of Pattern Recognition, S. Watanabe, Ed. Academic Press, Orlando, Fla., 1972.
    • (1972) Frontiers of Pattern Recognition
    • WATANABE, S.1    Watanabe, S.2
  • 68
    • 0000392470 scopus 로고
    • Some special Vapnik-Chervonenkis classes
    • WENOCUR, R. S., AND DUDLEY, R. M. Some special Vapnik-Chervonenkis classes. Discrete Math. 33 (1981), 313-318.
    • (1981) Discrete Math. , vol.33 , pp. 313-318
    • WENOCUR, R.S.1    DUDLEY, R.M.2
  • 69
    • 0000027741 scopus 로고
    • Learning structural descriptions from examples
    • McGraw-Hill, New York
    • WINSTON, P. Learning structural descriptions from examples. In The Psychology of Computer Vision. McGraw-Hill, New York, 1975.
    • (1975) The Psychology of Computer Vision.
    • WINSTON, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.