메뉴 건너뛰기




Volumn 37, Issue 3, 1989, Pages 360-377

Identification of Nonminimum Phase Systems Using Higher Order Statistics

Author keywords

[No Author keywords available]

Indexed keywords

CONTROL SYSTEMS, STOCHASTIC--IDENTIFICATION; MATHEMATICAL STATISTICS; MATHEMATICAL TECHNIQUES--TRANSFER FUNCTIONS; NOISE, SPURIOUS SIGNAL--WHITE NOISE; PROBABILITY;

EID: 0024627342     PISSN: 00963518     EISSN: None     Source Type: Journal    
DOI: 10.1109/29.21704     Document Type: Article
Times cited : (385)

References (23)
  • 2
    • 77956828132 scopus 로고
    • Canonical correlation analysis of time series and the use of an information criterion
    • R.K. Mehra and D.G. Lainiotis, Eds. New York: Academic
    • H. Akaike, “Canonical correlation analysis of time series and the use of an information criterion,” in System Identification: Advances and Case Studies, R.K. Mehra and D.G. Lainiotis, Eds. New York: Academic, 1976.
    • (1976) System Identification: Advances and Case Studies
    • Akaike, H.1
  • 4
    • 0019031661 scopus 로고
    • Robust identification of a nonminimum phase system: Blind adjustment of linear equalizer in data communications
    • A. Benveniste, M. Goursat, and G. Roget, “Robust identification of a nonminimum phase system: Blind adjustment of linear equalizer in data communications,” IEEE Trans. Automat. Contr., vol. AC-25, pp. 385–398, 1980.
    • (1980) IEEE Trans. Automat. Contr. , vol.25 AC , pp. 385-398
    • Benveniste, A.1    Goursat, M.2    Roget, G.3
  • 6
    • 0001414711 scopus 로고
    • An introduction to polyspectra
    • D.R. Brillinger, “An introduction to polyspectra,” Ann. Math. Statist., vol. 36, pp. 1351–1374, 1965.
    • (1965) Ann. Math. Statist. , vol.36 , pp. 1351-1374
    • Brillinger, D.R.1
  • 7
    • 0001092007 scopus 로고
    • Computation and interpretation of kth-order spectra
    • B. Harris, Ed. New York: Wiley
    • D.R. Brillinger and M. Rosenblatt, “Computation and interpretation of kth-order spectra,” in Spectral Analysis of Time Series, B. Harris, Ed. New York: Wiley, 1967, pp. 189–232.
    • (1967) Spectral Analysis of Time Series , pp. 189-232
    • Brillinger, D.R.1    Rosenblatt, M.2
  • 8
    • 84986777915 scopus 로고
    • The comparison of least squares and third order periodogram procedures in the estimation of bifrequency
    • astronomy: Triple correlation theory and applications,” Appl. Opt., vol. 22, pp. 4028-4037, 1983.
    • D.R. Brillinger, “The comparison of least squares and third order periodogram procedures in the estimation of bifrequency,” J. Time Ser. Anal., pp. 95-102, 1980. astronomy: Triple correlation theory and applications,” Appl. Opt., vol. 22, pp. 4028–4037, 1983.
    • (1980) J. Time Ser. Anal. , pp. 95-102
    • Brillinger, D.R.1
  • 9
    • 0021460615 scopus 로고
    • Triple correlations
    • A.W. Lohman and B. Wirnitzer, “Triple correlations,” Proc. IEEE, vol. 72, pp. 889–901, 1984.
    • (1984) Proc. IEEE , vol.72 , pp. 889-901
    • Lohman, A.W.1    Wirnitzer, B.2
  • 10
    • 0001155634 scopus 로고
    • Phase estimation using the bispectrum
    • T. Matsuoka and T.J. Ulrych, “Phase estimation using the bispectrum,” Proc. IEEE, vol. 72, pp. 1403–1411, 1984.
    • (1984) Proc. IEEE , vol.72 , pp. 1403-1411
    • Matsuoka, T.1    Ulrych, T.J.2
  • 11
    • 0022875649 scopus 로고
    • Identification of nonminimum phase communication channels via parametric modeling of 3rd moments
    • Toronto, Canada
    • C.L. Nikias and A.N. Venetsanopoulos, “Identification of nonminimum phase communication channels via parametric modeling of 3rd moments,” in Proc. ICC′86, Toronto, Canada, 1986, pp. 667–670.
    • (1986) Proc. ICC′86 , pp. 667-670
    • Nikias, C.L.1    Venetsanopoulos, A.N.2
  • 12
    • 0023672687 scopus 로고
    • Performance analysis of parameter estimation algorithms based on high-order moments
    • Apr., also submitted for publication.
    • B. Porat and B. Friedlander, “Performance analysis of parameter estimation algorithms based on high-order moments,” in Proc. Int. Conf. ASSP, Apr. 1988; pp. 2412–2415; also submitted for publication.
    • (1988) Proc. Int. Conf. ASSP , pp. 2412-2415
    • Porat, B.1    Friedlander, B.2
  • 14
    • 84885480224 scopus 로고
    • Multichannel bispectrum estimation
    • Boston, MA, Nov.
    • M.R. Raghuveer, “Multichannel bispectrum estimation,” in 3rd ASSP Workshop Spectrum Est. Model., Boston, MA, Nov. 1986, pp. 21–24.
    • (1986) 3rd ASSP Workshop Spectrum Est. Model. , pp. 21-24
    • Raghuveer, M.R.1
  • 15
    • 0001457524 scopus 로고
    • Estimation of the bispectrum
    • M. Rosenblatt and J.N. Van Ness, “Estimation of the bispectrum,” Ann. Math. Statist., vol. 36, pp. 1120–1136, 1965.
    • (1965) Ann. Math. Statist. , vol.36 , pp. 1120-1136
    • Rosenblatt, M.1    Van Ness, J.N.2
  • 17
    • 0017429688 scopus 로고
    • Absolute value optimization to estimate phase properties of stochastic time series
    • J.D. Scargle, “Absolute value optimization to estimate phase properties of stochastic time series,” IEEE Trans. Inform. Theory, vol. IT-23, pp. 140–143, 1977.
    • (1977) IEEE Trans. Inform. Theory , vol.23 IT , pp. 140-143
    • Scargle, J.D.1
  • 18
    • 84941508181 scopus 로고
    • Univ. Southern Calif., Los Angeles, Tech. Rep. USCSIPI 106, May
    • A. Swami and J.M. Mendel, “On ESD's in system identification,” Univ. Southern Calif., Los Angeles, Tech. Rep. USCSIPI 106, May 1987.
    • (1987) On ESD's in system identification
    • Swami, A.1    Mendel, J.M.2
  • 19
    • 84941535617 scopus 로고    scopus 로고
    • Closed-form recursive estimation of MA coefficients using autocorrelations and third-order cumulants
    • submitted to
    • A. Swami and J.M. Mendel, “Closed-form recursive estimation of MA coefficients using autocorrelations and third-order cumulants,” submitted to IEEE Trans. Acoust., Speech, Signal Processing.
    • IEEE Trans. Acoust., Speech, Signal Processing
    • Swami, A.1    Mendel, J.M.2
  • 20
    • 0021641717 scopus 로고
    • Identification of nonminimum phase linear stochastic systems
    • also in Automatica, vol. 22, pp. 457-464, 1986.
    • J.K. Tugnait, “Identification of nonminimum phase linear stochastic systems,” in Proc. 23rd IEEE Conf. Decision Contr., 1984, pp. 342347; also in Automatica, vol. 22, pp. 457–464, 1986.
    • (1984) Proc. 23rd IEEE Conf. Decision Contr. , pp. 342-347
    • Tugnait, J.K.1
  • 21
    • 0022290718 scopus 로고
    • Order reduction of SISO nonminimum phase stochastic systems
    • Ft. Lauderdale, FL, and in IEEE Trans. Automat. Contr., vol. AC-31, pp. 623-632, 1986.
    • J.K. Tugnait, “Order reduction of SISO nonminimum phase stochastic systems,” in Proc. 24th IEEE Conf. Decision Contr., Ft. Lauderdale, FL, 1985, pp. 407-411; and in IEEE Trans. Automat. Contr., vol. AC-31, pp. 623–632, 1986.
    • (1985) Proc. 24th IEEE Conf. Decision Contr. , pp. 407-411
    • Tugnait, J.K.1
  • 22
    • 84939375641 scopus 로고
    • Realization and reduction of SISO nonminimum phase stochastic systems
    • U.B. Desai, Ed. Boston, MA: Kluwer Academic
    • J.K. Tugnait, “Realization and reduction of SISO nonminimum phase stochastic systems,” in Modelling and Application of Stochastic Processes, U.B. Desai, Ed. Boston, MA: Kluwer Academic, 1986, pp. 193–214.
    • (1986) Modelling and Application of Stochastic Processes , pp. 193-214
    • Tugnait, J.K.1
  • 23
    • 0001634204 scopus 로고
    • On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers
    • Maximum Likelihood Estimation of the Parameters of Multiple Sinusoids from Noisy Measurements PETRE STOICA, RANDOLPH L. MOSES, member, ieee, BENJAMIN FRIEDLANDER, fellow, ieee. and TORSTEN SOÖDERSTRO ÖM, senior member, ieee Abstract-The problem of estimating the frequencies, phases, and amplitudes of sinusoidal signals is considered. A simplified maximum-likelihood Gauss-Newton algorithm which provides asymptotically efficient estimates of these parameters is proposed. Initial estimates for this algorithm are obtained by a variation of the overdetermined Yule-Walker method and a periodogram-based procedure. Use of the maximum-likelihood Gauss-Newton algorithm is not, however, limited to this particular initialization method. Some other possibilities to get suitable initial estimates are briefly discussed. An analytical and numerical study of the shape of the likelihood function associated with the sinusoids-in-noise process reveals its multimodal structure and clearly sets the importance of the initialization procedure. Some numerical examples are presented to illustrate the performance of the proposed estimation procedure. Comparison to the performance corresponding to the Cramer-Rao lower bound is also presented, using a simple expression for the asymptotic Cramer-Rao bound covariance matrix derived in the paper. P. Stoica is with the Facultatea de Automatica, Institutul Politehnic Bucuresti, Splaiul Independentei 313, Sector 6, R-77 206 Bucharest, Romania. R.L. Moses is with the Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210. B. Friedlander is with Signal Processing Technology, Ltd., 703 Coast-land Drive, Palo Alto, CA 94303. T. Soderstroöm is with the Department of Automatic Control and Systems Analysis, Institute of Technology, Uppsala University, P.O. Box 534, S-751 21 Uppsala, Sweden.
    • G.U. Yule, “On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers,” Philosoph. Trans. Roy. Soc. London, Ser. A., vol. 226A, pp. 267–298, 1927. Maximum Likelihood Estimation of the Parameters of Multiple Sinusoids from Noisy Measurements PETRE STOICA, RANDOLPH L. MOSES, member, ieee, BENJAMIN FRIEDLANDER, fellow, ieee. and TORSTEN SOÖDERSTRO ÖM, senior member, ieee Abstract-The problem of estimating the frequencies, phases, and amplitudes of sinusoidal signals is considered. A simplified maximum-likelihood Gauss-Newton algorithm which provides asymptotically efficient estimates of these parameters is proposed. Initial estimates for this algorithm are obtained by a variation of the overdetermined Yule-Walker method and a periodogram-based procedure. Use of the maximum-likelihood Gauss-Newton algorithm is not, however, limited to this particular initialization method. Some other possibilities to get suitable initial estimates are briefly discussed. An analytical and numerical study of the shape of the likelihood function associated with the sinusoids-in-noise process reveals its multimodal structure and clearly sets the importance of the initialization procedure. Some numerical examples are presented to illustrate the performance of the proposed estimation procedure. Comparison to the performance corresponding to the Cramer-Rao lower bound is also presented, using a simple expression for the asymptotic Cramer-Rao bound covariance matrix derived in the paper. P. Stoica is with the Facultatea de Automatica, Institutul Politehnic Bucuresti, Splaiul Independentei 313, Sector 6, R-77 206 Bucharest, Romania. R.L. Moses is with the Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210. B. Friedlander is with Signal Processing Technology, Ltd., 703 Coast-land Drive, Palo Alto, CA 94303. T. Soderstroöm is with the Department of Automatic Control and Systems Analysis, Institute of Technology, Uppsala University, P.O. Box 534, S-751 21 Uppsala, Sweden.
    • (1927) Philosoph. Trans. Roy. Soc. London, Ser. A. , vol.226 A , pp. 267-298
    • Yule, G.U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.