메뉴 건너뛰기




Volumn 36, Issue 10, 1988, Pages 1628-1641

Adaptive Segmentation of Speckled Images Using a Hierarchical Random Field Model

Author keywords

[No Author keywords available]

Indexed keywords

PROBABILITY -- RANDOM PROCESSES; RADAR -- SYNTHETIC APERTURE; RADAR IMAGING;

EID: 0024089491     PISSN: 00963518     EISSN: None     Source Type: Journal    
DOI: 10.1109/29.7551     Document Type: Article
Times cited : (91)

References (29)
  • 1
    • 0000365247 scopus 로고
    • Classification of binary random patterns
    • Oct.
    • K. Abend, T. J. Harley, and L. N. Kanal, “Classification of binary random patterns” IEEE Trans. Inform. Theory, vol. IT-1 1, pp. 538-544, Oct. 1965.
    • (1965) , vol.IT-11 , pp. 538-544
    • Abend, K.1    Harley, T.J.2    Kanal, L.N.3
  • 2
    • 84941514953 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Oct.
    • J. E. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. Roy. Stat. Soc., Ser. B, vol. 36, pp. 192–236, 1974.
    • (1965) J. Roy. Stat. Soc., Ser. B , vol.IT-11 , pp. 538-544
    • Besag, J.E.1
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Roy. Stat. Soc., Ser. B, vol. 39, pp. 1–38, 1977.
    • (1977) J. Roy. Stat. Soc.Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 6
    • 84941494134 scopus 로고
    • Adaptive segmentation of noisy images: An EM algorithm approach
    • Oct. Allerton House, Monticello, IL
    • H. Derin and S. Lakshmanan, “Adaptive segmentation of noisy images: An EM algorithm approach,” in Proc. 24th Allerton Conf. Commun., Contr., Comput., Allerton House, Monticello, IL, Oct. 1986, 705–706.
    • (1986) Proc. 24th Allerton Conf. Commun., Contr., Comput. , pp. 705-706
    • Derin, H.1    Lakshmanan, S.2
  • 7
    • 0023123263 scopus 로고
    • Modeling and segmentation of noisy and textured images using Gibbs random fields
    • Jan.
    • H. Derin and H. Elliott, “Modeling and segmentation of noisy and textured images using Gibbs random fields,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 39–55, Jan. 1987.
    • (1987) IEEE Trans. Pattern Anal. Machine Intell. , vol.PAMI-9 , pp. 39-55
    • Derin, H.1    Elliott, H.2
  • 8
    • 0023252912 scopus 로고
    • Unsupervised segmentation of speckled images
    • May, Ann Arbor, MI
    • H. Derin, P. A. Kelly, and K. D. Hartt, “Unsupervised segmentation of speckled images,” in Proc. 1987 Int. Geosci. Remote Sensing Symp., IGARSS-’87, Ann Arbor, MI, May 1987, pp. 1349–1356.
    • (1987) Proc. Int. Geosci. Remote Sensing Symp. , pp. 1349
    • Derin, H.1    Kelly, P.A.2    Hartt, K.D.3
  • 9
    • 0021231004 scopus 로고
    • Application of the Gibbs distribution to image segmentation
    • Mar. San Diego. CA
    • H. Elliott, H. Derin, R. Cristi, and D. Geman, “Application of the Gibbs distribution to image segmentation,” in Proc. 1984 Int. Conf. Acoust., Speech, Signal Processing, ICASSP’84, San Diego. CA, Mar. 1984, 32.5.1-32.5.4.
    • (1984) Proc , pp. 32.5.1-32.5.4
    • Elliott, H.1    Derin, H.2    Cristi, R.3    Geman, D.4
  • 10
    • 0023312161 scopus 로고
    • Lognormal random field models and their applications to radar image synthesis
    • Mar.
    • R. T. Frankot and R. Chellappa, “Lognormal random field models and their applications to radar image synthesis,” IEEE Trans. Geosci. Remote Sensing, vol. GE-25, pp. 195–207, Mar. 1987.
    • (1987) IEEE Trans. Geosci. Remote Sensing , vol.GE-25 , pp. 195-207
    • Frankot, R.T.1    Chellappa, R.2
  • 11
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Nov.
    • S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 721–741, Nov. 1984.
    • (1984) IEEE Trans. Pattern Anal. Machine Intell. , vol.PAMI-6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 13
    • 0002068881 scopus 로고
    • Statistical properties of laser speckle patterns
    • J. C. Dainty, Ed. Heidelberg: Springer-Verlag
    • J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, vol. 9, Topics in Applied Physics, J. C. Dainty, Ed. Heidelberg: Springer-Verlag, 1975, pp. 9–75.
    • (1975) Laser Speckle and Related Phenomena, Topics in Applied Physics , vol.9 , pp. 9-75
    • Goodman, J.W.1
  • 14
    • 0001539879 scopus 로고
    • Some fundamental properties of speckle
    • Nov.
    • —, “Some fundamental properties of speckle,” J. Opt. Soc. Amer., vol. 66, pp. 1145–1150, Nov. 1976.
    • (1976) J. Opt. Soc. Amer. , vol.66 , pp. 1145-1150
  • 15
    • 0004224256 scopus 로고
    • New York: Wiley
    • —, Statistical Optics. New York: Wiley, 1985.
    • (1985) Statistical Optics
  • 16
    • 0012131297 scopus 로고
    • A representation theorem for complex normal processes
    • Apr.
    • T. L. Grettenberg, “A representation theorem for complex normal processes,” IEEE Trans. Inform. Theory, vol. IT-11, pp. 305–306, Apr. 1965.
    • (1965) IEEE Trans. Inform. Theory , vol.IT-11 , pp. 305-306
    • Grettenberg, T.L.1
  • 17
    • 84948610629 scopus 로고
    • Two-dimensional Bayesian estimate of images
    • July
    • A. Habibi, “Two-dimensional Bayesian estimate of images,” Proc. IEEE, vol. 60, pp. 878–888, July 1972.
    • (1972) Proc. IEEE , vol.60 , pp. 878-888
    • Habibi, A.1
  • 18
    • 84941512412 scopus 로고
    • The modeling and segmentation of speckled images
    • Mar. Amherst, MA
    • K. D. Hartt, “The modeling and segmentation of speckled images,” M.S. thesis, Dep. ECE, Univ. Mass., Amherst, MA, Mar. 1987.
    • (1987) M.S. thesis, Dep. ECE, Univ. Mass.
    • Hartt, K.D.1
  • 21
    • 0023315739 scopus 로고
    • Adaptive restoration of images with speckle
    • Mar.
    • —, “Adaptive restoration of images with speckle,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 373–383, Mar. 1987.
    • (1987) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-35 , pp. 373-383
  • 23
  • 24
    • 0019728171 scopus 로고
    • Speckle analysis and smoothing of synthetic aperture radar images
    • J.S. Lee, “Speckle analysis and smoothing of synthetic aperture radar images,” Comput. Graph. Image Processing, vol. 17, pp. 24–32, 1981.
    • (1981) Comput. Graph. Image Processing,vol , vol.17 , pp. 24-32
    • Lee, J.S.1
  • 25
    • 0022713973 scopus 로고
    • Speckle suppression and analysis of synthetic aperture radar images
    • May
    • —, “Speckle suppression and analysis of synthetic aperture radar images,” Opt. Eng., vol. 25, no. 9, pp. 636–643. May 1986.
    • (1986) Opt. Eng. , vol.25 , Issue.9 , pp. 636-643
  • 26
    • 0017723695 scopus 로고
    • Recursive least-squares smoothing of noise in images
    • Dec.
    • D.-P. Panda and A. C. Kak, “Recursive least-squares smoothing of noise in images,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25, pp. 520–524, Dec. 1977.
    • (1977) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-25 , pp. 520-524
    • Panda, D.-P.1    Kak, A.C.2
  • 27
    • 0001135032 scopus 로고
    • Speckle reduction in synthetic aperture radars
    • Nov.
    • L. J. Porcello, N. G. Massey, R. B. Innes, and J. M. Marks, “Speckle reduction in synthetic aperture radars,” J. Opt. Soc. Amer., vol. 66, pp. 1305–1311, Nov. 1976.
    • (1976) J. Opt. Soc. Amer. , vol.66 , pp. 1305-1311
    • Porcello, L.J.1    Massey, N.G.2    Innes, R.B.3    Marks, J.M.4
  • 29
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Apr.
    • R. Redner and H. Walker, “Mixture densities, maximum likelihood and the EM algorithm,” SIAM Rev., vol. 26, no. 2, pp. 195–239, Apr. 1984.
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.1    Walker, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.