-
1
-
-
0010909611
-
Note on the existence of perfect maps
-
Jan.
-
I. S. Reed and R. M. Stewart, “Note on the existence of perfect maps,” IRE Trans. Inform. Theory, vol. IT-8, pp. 10–12, Jan. 1962.
-
(1962)
IRE Trans. Inform. Theory
, vol.IT-8
, pp. 10-12
-
-
Reed, I.S.1
Stewart, R.M.2
-
2
-
-
0021483914
-
A note on binary arrays with a certain window property
-
Sept.
-
S. L. Ma, “A note on binary arrays with a certain window property,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 774–775, Sept. 1984.
-
(1984)
IEEE Trans. Inform. Theory
, vol.IT-30
, pp. 774-775
-
-
Ma, S.L.1
-
3
-
-
0000004039
-
On de Bruijn arrays
-
May
-
C. T. Fan, S. M. Fan, S. L. Ma, and M. K. Siu, “On de Bruijn arrays,” Ars Combinatoria, vol. 19A, pp. 205–213, May 1985.
-
(1985)
Ars Combinatoria
, vol.19A
, pp. 205-213
-
-
Fan, C.T.1
Fan, S.M.2
Ma, S.L.3
Siu, M.K.4
-
4
-
-
0010767509
-
On the existence of perfect maps
-
Oct.
-
B. Gordon, “On the existence of perfect maps,” IEEE Trans. Inform. Theory, vol. IT-12, pp. 486–487, Oct. 1966.
-
(1966)
IEEE Trans. Inform. Theory
, vol.IT-12
, pp. 486-487
-
-
Gordon, B.1
-
5
-
-
0017218087
-
Pseudo-random sequences and arrays
-
Dec.
-
F. J. MacWilliams and N. J. A. Sloane, “Pseudo-random sequences and arrays,” Proc. IEEE, vol. 64, pp. 1715–1729, Dec. 1976.
-
(1976)
Proc. IEEE
, vol.64
, pp. 1715-1729
-
-
MacWilliams, F.J.1
Sloane, N.J.A.2
-
6
-
-
0015430480
-
A theory of two-dimensional linear recurring arrays
-
Nov.
-
T. Nomura, H. Miyakawa, H. Imai, and A. Fukuda, “A theory of two-dimensional linear recurring arrays,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 775–785, Nov. 1972.
-
(1972)
IEEE Trans. Inform. Theory
, vol.IT-18
, pp. 775-785
-
-
Nomura, T.1
Miyakawa, H.2
Imai, H.3
Fukuda, A.4
-
7
-
-
0002198737
-
On pseudo-random arrays
-
Feb.
-
J. H. van Lint, F. J. MacWilliams, and N. J. A. Sloane, “On pseudo-random arrays,” SIAM J. Appl. Math., vol. 36, pp. 62–72, Feb. 1979.
-
(1979)
SIAM J. Appl. Math.
, vol.36
, pp. 62-72
-
-
van Lint, J.H.1
MacWilliams, F.J.2
Sloane, N.J.A.3
-
10
-
-
0000881136
-
A survey of full length nonlinear shift register cycle algorithms
-
Apr.
-
H. M. Fredricksen, “A survey of full length nonlinear shift register cycle algorithms,” SIAM Rev., vol. 24, pp. 195–221, Apr. 1982.
-
(1982)
SIAM Rev.
, vol.24
, pp. 195-221
-
-
Fredricksen, H.M.1
-
11
-
-
0001353507
-
Circuits and trees in ordered linear graphs
-
T. van Aardenne-Ehrenfest and N. G. de Bruijn, “Circuits and trees in ordered linear graphs,” Simon Steven, vol. 28, pp. 203–217, 1951.
-
(1951)
Simon Steven
, vol.28
, pp. 203-217
-
-
van Aardenne-Ehrenfest, T.1
de Bruijn, N.G.2
-
12
-
-
0008782949
-
Necklaces of beads in k colors and k-ary de Bruijn sequences
-
Sept.
-
H. M. Fredricksen and J. Maiorana, “Necklaces of beads in k colors and k-ary de Bruijn sequences,” Discrete Math., vol. 23, pp. 207–210, Sept. 1978.
-
(1978)
Discrete Math.
, vol.23
, pp. 207-210
-
-
Fredricksen, H.M.1
Maiorana, J.2
-
13
-
-
0039871149
-
A new memoryless algorithm for de Bruijn sequences
-
Mar.
-
A. Ralston, “A new memoryless algorithm for de Bruijn sequences,” J. Algorithms, vol. 2, pp. 50–62, Mar. 1981.
-
(1981)
J. Algorithms
, vol.2
, pp. 50-62
-
-
Ralston, A.1
-
14
-
-
38249040613
-
An algorithm for constructing m-ary de Bruijn sequences
-
Sept.
-
T. Etzion, “An algorithm for constructing m-ary de Bruijn sequences,” J. Algorithmsvol. 7, pp. 331–340, Sept. 1986.
-
(1986)
J. Algorithms
, pp. 331-340
-
-
Etzion, T.1
-
15
-
-
33646278638
-
A class of non-linear de Bruijn cycles
-
Sept.
-
H. Fredricksen, “A class of non-linear de Bruijn cycles,” J. Cornbin. Theory, Ser. A, vol. 19, pp. 191–199, Sept. 1975.
-
(1975)
J. Cornbin. Theory
, vol.19
, pp. 191-199
-
-
Fredricksen, H.1
-
16
-
-
0021427462
-
Algorithms for the generation of full-length shift-register sequences
-
May
-
T. Etzion and A. Lempel, “Algorithms for the generation of full-length shift-register sequences,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 480–484, May 1984.
-
(1984)
IEEE Trans. Inform. Theory
, vol.IT-30
, pp. 480-484
-
-
Etzion, T.1
Lempel, A.2
-
17
-
-
0000941884
-
On the complexities of de Bruijn sequences
-
Nov.
-
A. H. Chan, R. A. Games, and E. L. Key, “On the complexities of de Bruijn sequences,” J. Combin. Theory, Ser. A, vol. 33, pp. 233–246, Nov. 1982.
-
(1982)
J. Combin. Theory
, vol.33
, pp. 233-246
-
-
Chan, A.H.1
Games, R.A.2
Key, E.L.3
-
18
-
-
0000869587
-
On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers
-
Dec.
-
A. Lempel, “On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers,” IEEE Trans. Comput., vol. C-19, pp. 1204–1209, Dec. 1970.
-
(1970)
IEEE Trans. Comput.
, vol.C-19
, pp. 1204-1209
-
-
Lempel, A.1
-
19
-
-
0021483916
-
Construction of de Bruijn sequences of minimal complexity
-
Sept.
-
T. Etzion and A. Lempel, “Construction of de Bruijn sequences of minimal complexity,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 705–709, Sept. 1984.
-
(1984)
IEEE Trans. Inform. Theory
, vol.IT-30
, pp. 705-709
-
-
Etzion, T.1
Lempel, A.2
-
20
-
-
0002665177
-
Theory of autonomous linear sequential networks
-
Mar.
-
B. Elspas, “Theory of autonomous linear sequential networks,” IRE Trans. Circuit Theory, vol. CT-6, pp. 45–60, Mar. 1959.
-
(1959)
IRE Trans. Circuit Theory
, vol.CT-6
, pp. 45-60
-
-
Elspas, B.1
-
22
-
-
3643094819
-
Tables of finite fields
-
Dec.
-
J. D. Alanen and D. E. Knuth, “Tables of finite fields,” Sankhya, Ser. A, vol. 26, pp. 305–328, Dec. 1964.
-
(1964)
Sankhya
, vol.26
, pp. 305-328
-
-
Alanen, J.D.1
Knuth, D.E.2
-
23
-
-
84968508925
-
Tables of irreducible polynomials over GF[2] of degree10through 20
-
Oct.
-
S. Mossige, “Tables of irreducible polynomials over GF[2] of degree 10 through 20,” Math. Comput., vol. 26, pp. 1007–1009, Oct. 1972.
-
(1972)
Math. Comput.
, vol.26
, pp. 1007-1009
-
-
Mossige, S.1
|