-
1
-
-
0004245694
-
-
Dover, New York, N.Y
-
Abramowitz, M., and Stegun, I. A. eds., (1964). Handbook of mathematical functions. Dover, New York, N.Y.
-
(1964)
Handbook of mathematical functions
-
-
Abramowitz, M.1
Stegun, I.A.2
-
2
-
-
0018983742
-
Developments of stream-function wave theory
-
Chaplin, J. R. (1980). “Developments of stream-function wave theory.” Coast. Engrg., 3, 179-205.
-
(1980)
Coast. Engrg
, vol.3
, pp. 179-205
-
-
Chaplin, J.R.1
-
3
-
-
0041626602
-
Direct numerical calculation of wave properties
-
Chappelear, J. E. (1961). “Direct numerical calculation of wave properties.” J. Geophys. Res., 66, 501-508.
-
(1961)
J. Geophys. Res
, vol.66
, pp. 501-508
-
-
Chappelear, J.E.1
-
4
-
-
0001467323
-
Steep gravity waves in water of arbitrary uniform depth
-
Series A, 286, London, England, 183-230
-
Cokelet, E. D. (1977). “Steep gravity waves in water of arbitrary uniform depth.” Proc. Roy. Soc, London, Series A, 286, London, England, 183-230.
-
(1977)
Proc. Roy. Soc, London
-
-
Cokelet, E.D.1
-
5
-
-
0016019644
-
A finite amplitude wave on a linear shear current
-
Dalrymple, R. A. (1974). “A finite amplitude wave on a linear shear current.” J. Geophys. Res., 79, 4498-4504.
-
(1974)
J. Geophys. Res
, vol.79
, pp. 4498-4504
-
-
Dalrymple, R.A.1
-
6
-
-
0022679203
-
Nonuniqueness in stream function wave theory
-
ASCE
-
Dalrymple, R. A., and Solana, P. (1986). “Nonuniqueness in stream function wave theory.” J. Wtrway. Port, Coast. Oc. Engrg., ASCE, 112, 333-337.
-
(1986)
J. Wtrway. Port, Coast. Oc. Engrg
, vol.112
, pp. 333-337
-
-
Dalrymple, R.A.1
Solana, P.2
-
7
-
-
0000502986
-
Stream function representation of nonlinear ocean waves
-
Dean, R. G. (1965). “Stream function representation of nonlinear ocean waves.” J. Geophys. Res., 70, 4561-4572.
-
(1965)
J. Geophys. Res
, vol.70
, pp. 4561-4572
-
-
Dean, R.G.1
-
9
-
-
0022664548
-
Intercomparison of near-bottom kinematics by several wave theories and field and laboratory data
-
Dean, R. G., and Perlin, M. (1986). “Intercomparison of near-bottom kinematics by several wave theories and field and laboratory data.” Coast. Engrg., 9, 399-437.
-
(1986)
Coast. Engrg., 9
, pp. 399-437
-
-
Dean, R.G.1
Perlin, M.2
-
11
-
-
0018518836
-
A high-order cnoidal wave theory
-
Fenton, J. D. (1979). “A high-order cnoidal wave theory.” J. Fluid Mech., 94, 129-161.
-
(1979)
J. Fluid Mech
, vol.94
, pp. 129-161
-
-
Fenton, J.D.1
-
12
-
-
0022025241
-
A fifth-order Stokes theory for steady waves
-
ASCE,. (See also Errata, 1987, 113, 437-438.)
-
Fenton, J. D. (1985). “A fifth-order Stokes theory for steady waves.” J. Wtrway. Port, Coast, and Oc. Engrg., ASCE, 111, 216-234. (See also Errata, 1987, 113, 437-438.)
-
(1985)
J. Wtrway. Port, Coast, and Oc. Engrg
, vol.111
, pp. 216-234
-
-
Fenton, J.D.1
-
13
-
-
84930134455
-
The numerical solution of steady water wave problems
-
13, to appear
-
Fenton, J. D. (1987). “The numerical solution of steady water wave problems.” Computers and Geosci., 13, to appear.
-
(1987)
Computers and Geosci
-
-
Fenton, J.D.1
-
14
-
-
0038292743
-
Rapidly-convergent methods for evaluating elliptic integrals and theta and elliptic functions
-
Series B, 24, 47-58
-
Fenton, J. D., and Gardiner-Garden, R. S. (1982). “Rapidly-convergent methods for evaluating elliptic integrals and theta and elliptic functions.” J. Australian Math. Soc, Series B, 24, 47-58.
-
(1982)
J. Australian Math. Soc
-
-
Fenton, J.D.1
Gardiner-Garden, R.S.2
-
15
-
-
0345631026
-
Stream function solutions for steady water waves
-
Huang, M-C, and Hudspeth, R. T. (1984). “Stream function solutions for steady water waves.” Continental Shelf Res., 3, 175-190.
-
(1984)
Continental Shelf Res
, vol.3
, pp. 175-190
-
-
Huang, M.-C.1
Hudspeth, R.T.2
-
16
-
-
84974098208
-
The second approximation to cnoidal and solitary waves
-
Laitone, E. V. (1960). “The second approximation to cnoidal and solitary waves.” J. Fluid Mech., 9, 430-444.
-
(1960)
J. Fluid Mech
, vol.9
, pp. 430-444
-
-
Laitone, E.V.1
-
17
-
-
0021477524
-
Parameterized solution to nonlinear wave problem
-
Le Mehaute, B., Lu, C-C, and Ulmer, E. W. (1984). “Parameterized solution to nonlinear wave problem.” J. Wtrway. Port, Coast. Oc. Engrg., 110, 309-320.
-
(1984)
J. Wtrway. Port, Coast. Oc. Engrg
, vol.110
, pp. 309-320
-
-
Le Mehaute, B.1
Lu, C.-C.2
Ulmer, E.W.3
-
18
-
-
0001581244
-
Integral properties of periodic gravity waves of finite amplitude
-
Series A, 342, London, England, 157-174
-
Longuet-Higgins, M. S. (1975). “Integral properties of periodic gravity waves of finite amplitude.” Proc, Roy. Soc, London, Series A, 342, London, England, 157-174.
-
(1975)
Proc, Roy. Soc, London
-
-
Longuet-Higgins, M.S.1
-
19
-
-
0017533207
-
Higher-order solutions of the Stokes and cnoidal waves
-
Univ. of Tokyo, Series B, 34, Tokyo, Japan, 267-293
-
Nishimura, H., Isobe, M., and Horikawa, K. (1977). “Higher-order solutions of the Stokes and cnoidal waves.” J. Fac ofEngrg., Univ. of Tokyo, Series B, 34, Tokyo, Japan, 267-293.
-
(1977)
J. Fac ofEngrg
-
-
Nishimura, H.1
Isobe, M.2
Horikawa, K.3
-
20
-
-
0019544116
-
A Fourier approximation method for steady water waves
-
Rienecker, M. M., and Fenton, J. D. (1981). “A Fourier approximation method for steady water waves.” J. Fluid Mech., 104, 119-137.
-
(1981)
J. Fluid Mech
, vol.104
, pp. 119-137
-
-
Rienecker, M.M.1
Fenton, J.D.2
-
21
-
-
0347659109
-
Computer extension and analytical continuation of Stokes' expansion for gravity waves
-
Schwartz, L. W. (1974). “Computer extension and analytical continuation of Stokes' expansion for gravity waves.” J. Fluid Mech, 65, 553-578.
-
(1974)
J. Fluid Mech
, vol.65
, pp. 553-578
-
-
Schwartz, L.W.1
-
22
-
-
0001893684
-
Fifth-order gravity wave theory
-
ASCE, The Hague, The Netherlands
-
Skjelbreia, L., and Hendrickson, J. (1962). “Fifth-order gravity wave theory.” Proc. 7th Int. Conf. Coast. Engrg., ASCE, The Hague, The Netherlands, 184-196.
-
(1962)
Proc. 7th Int. Conf. Coast. Engrg
, pp. 184-196
-
-
Skjelbreia, L.1
Hendrickson, J.2
-
23
-
-
85066541687
-
Discussion of “Nonuniqueness in stream function wave theory” by R. A. Dalrymple and P. Solana
-
ASCE, 113, to be published
-
Sobey, R. J. (1987). Discussion of “Nonuniqueness in stream function wave theory” by R. A. Dalrymple and P. Solana. J. Wtrway., Port, Coast., and Oc. Engrg., ASCE, 113, to be published.
-
(1987)
J. Wtrway., Port, Coast., and Oc. Engrg
-
-
Sobey, R.J.1
-
24
-
-
0001360283
-
The long-wave paradox in the theory of gravity waves
-
Ursell, F. (1953). “The long-wave paradox in the theory of gravity waves.” Procs., Cambridge Phil. Soc, 49, 685-694.
-
(1953)
Procs., Cambridge Phil. Soc
, vol.49
, pp. 685-694
-
-
Ursell, F.1
-
25
-
-
0018654983
-
Numerical computation of steep gravity waves in shallow water
-
Vanden-Broeck, J. M., and Schwartz, L. W. (1979). “Numerical computation of steep gravity waves in shallow water.” Phys. of Fluids, 22, 1868-1871.
-
(1979)
Phys. of Fluids
, vol.22
, pp. 1868-1871
-
-
Vanden-Broeck, J.M.1
Schwartz, L.W.2
-
26
-
-
3643134801
-
A presentation of cnoidal wave theory for practical application
-
Wiegel, R. L. (1960). “A presentation of cnoidal wave theory for practical application.” J. Fluid Mech., 7, 273-286.
-
(1960)
J. Fluid Mech
, vol.7
, pp. 273-286
-
-
Wiegel, R.L.1
|