-
1
-
-
0003415652
-
-
Addison-Wesley, Reading, Pa.,]
-
AHO, A. V., HOPCROFT, J. E., and ULLMAN, J. D. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Pa., 1974, pp. 179-187.]
-
(1974)
The Design and Analysis of Computer Algorithms
, pp. 179-187
-
-
Aho, A.V.1
Hopcroft, J.E.2
Ullman, J.D.3
-
2
-
-
0001112745
-
-
ST. J.A. The square of a block is Hamiltonian connected. J. Comb. Theory, Set. B.]
-
CHARTRAND, G., HOBBS, A. M., JUNG, H. A., KAPOOR, S. F., and NASH-WILLIAMS, C. ST. J.A. The square of a block is Hamiltonian connected. J. Comb. Theory, Set. B 16 (1974) 290-292.]
-
(1974)
, vol.16
, pp. 290-292
-
-
Chartrand, G.1
Hobbs, A.M.2
Jung, H.A.3
Kapoor, S.F.4
Nash-Williams, C.5
-
3
-
-
0003522092
-
-
Technical report, Graduate School of Industrial Administration, Carnegie-Mellon Univ., Pittsburgh, Pa.]
-
CHRISTOFIDES, N. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Graduate School of Industrial Administration, Carnegie-Mellon Univ., Pittsburgh, Pa., 1976.]
-
(1976)
Worst-case analysis of a new heuristic for the travelling salesman problem
-
-
Christofides, N.1
-
4
-
-
0001831598
-
The square of every two-connected graph is Hamiltonian
-
FLEISCHNER, H. The square of every two-connected graph is Hamiltonian. J. Comb. Theory, Set. B 16 (1974), 29-34.]
-
(1974)
J. Comb. Theory, Set. B
, vol.16
, pp. 29-34
-
-
Fleischner, H.1
-
5
-
-
0020749455
-
An extension of Christofides heuristic to the k-person travelling salesman problem
-
FRIEZE, A.M. An extension of Christofides heuristic to the k-person travelling salesman problem. Discr. Appl. Math. 6 (1983), 79-83.]
-
(1983)
Discr. Appl. Math.
, vol.6
, pp. 79-83
-
-
Frieze, A.M.1
-
7
-
-
84945710540
-
-
Clustering to minimize the maximum inter-city distance. Tech. Rep. 117, Computer Science Dept., Univ. of Texas, Dallas.]
-
GONZALEZ, T. F’. Clustering to minimize the maximum inter-city distance. Tech. Rep. 117, Computer Science Dept., Univ. of Texas, Dallas, 1982.]
-
(1982)
F’
-
-
Gonzalez, T.1
-
9
-
-
84915482866
-
Easy Solutions for the k-Center Problem or the Dominating Set Problem on Random Graphs
-
HOFHBAUM, D.S. Easy Solutions for the k-Center Problem or the Dominating Set Problem on Random Graphs. Ann. Disc. Math. 25 (1985), 189-210.]
-
(1985)
Ann. Disc. Math.
, vol.25
, pp. 189-210
-
-
Hofhbaum, D.S.1
-
10
-
-
0346912154
-
-
In Proceedings of the 16th Annual ACM Symposium on Theory of Computing (Washington, DC, Apr. 30-May 2). ACM, New York, I984.]
-
HOCHBAUM, D. S., AND SHMOYS, D.B. Powers of graphs: A powerful approximation algorithm technique for bottleneck problems. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing (Washington, DC, Apr. 30-May 2). ACM, New York, I984, pp. 324-333.]
-
Powers of graphs: A powerful approximation algorithm technique for bottleneck problems
, pp. 324-333
-
-
Hochbaum, D.S.1
Shmoys, D.B.2
-
11
-
-
84945710542
-
-
J. Algorithms, to appear.]
-
HOCHBAUM, O. S., NISHIZEKI, T., AND SHMOYS, D.B. A better than “best possible” algorithm to edge color m ultigraphs. J. Algorithms, to appear.]
-
A better than “best possible” algorithm to edge color m ultigraphs
-
-
Hochbaum, O.S.1
Nishizeki, T.2
Shmoys, D.B.3
-
12
-
-
0018542104
-
Easy and hard bottleneck location problems
-
Hsu, W. L., AND NEMHAUSER, G.L. Easy and hard bottleneck location problems. Disc. Appl. Math. 1 (1979), 209-216.]
-
(1979)
Disc. Appl. Math.
, vol.1
, pp. 209-216
-
-
Hsu, W.L.1
Nemhauser, G.L.2
-
13
-
-
0343857797
-
-
Ph.D. dissertation, McGill Univ., Montreal, Que., Canada.]
-
LAU, H.T. Finding a Hamiltonian cycle in the square of a block. Ph.D. dissertation, McGill Univ., Montreal, Que., Canada, 1980.]
-
(1980)
Finding a Hamiltonian cycle in the square of a block
-
-
Lau, H.T.1
-
16
-
-
0021387309
-
Guaranteed performance heuristic for the bottleneck travelling salesman problem
-
PARKER, R. G., AND RARDIN, R.L. Guaranteed performance heuristic for the bottleneck travelling salesman problem. Oper. Res. Lett. 6 (1982), 269-272.]
-
(1982)
Oper. Res. Lett.
, vol.6
, pp. 269-272
-
-
Parker, R.G.1
Rardin, R.L.2
|