메뉴 건너뛰기




Volumn 34, Issue 2, 1986, Pages 285-295

Implementation of “Split-Radix” FFT algorithms for complex real, and real-symmetric data

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL TECHNIQUES - ALGORITHMS;

EID: 0022700957     PISSN: 00963518     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASSP.1986.1164811     Document Type: Article
Times cited : (209)

References (24)
  • 1
    • 84968470212 scopus 로고
    • An algorithm for machine computation of complex Fourier series
    • J. W. Cooley and J. W. Tukey, “An algorithm for machine computation of complex Fouri er series” Math Comput vol. 19, pp. 297–301, 1965.
    • (1965) Math Comput , vol.19 , pp. 297-301
    • Cooley, J.W.1    Tukey, J.W.2
  • 3
    • 0017788099 scopus 로고
    • Real-factor FFT algorithms
    • K. M. Cho and G. C. Temes, “Real-factor FFT algorithms,” in Proc. IEEE ICASSP, 1978, pp. 634–637.
    • (1978) Proc. IEEE ICASSP , pp. 634-637
    • Cho, K.M.1    Temes, G.C.2
  • 4
    • 0020332039 scopus 로고
    • Very fast computation of the radix-2, discrete Fourier transform
    • R. D. Preuss, “Very fast computation of the radix-2, discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 595–607, 1982.
    • (1982) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-30 , pp. 595-607
    • Preuss, R.D.1
  • 6
    • 0020256706 scopus 로고
    • Twiddle factors in the radix-2 FFT
    • H. Johnson and C. S. Burrus, “Twiddle factors in the radix-2 FFT,” in Proc. 1982 Asilomar Conf. Circuits Syst., Comput 1982, pp. 413–416.
    • (1982) Proc , pp. 413-416
    • Johnson, H.1    Burrus, C.S.2
  • 7
    • 41449119182 scopus 로고
    • On the multiplicative complexity of the discrete Fourier transform
    • S. Winograd, “On the multiplicative complexity of the discrete Fourier transform,” Adv. Math., vol. 32, pp. 83–117, 1979.
    • (1979) Adv. Math. , vol.32 , pp. 83-117
    • Winograd, S.1
  • 9
    • 0017367718 scopus 로고
    • Automatic generation of time efficient digital signal processing software
    • Feb
    • L. R. Morris, “Automatic generation of time efficient digital signal processing software,” IEEE Trans. Acoust., Speech, Signal Process- vol. ASSP-25, pp. 74–79, Feb. 1977.
    • (1977) IEEE Trans. Acoust., Speech, Signal Process- , vol.ASSP-25 , pp. 74-79
    • Morris, L.R.1
  • 10
    • 84966217500 scopus 로고
    • On computing the discrete Fourier transform
    • Jan
    • S. Winograd, “On computing the discrete Fourier transform,” Math. Comput., vol. 32, pp. 175–199, Jan. 1978.
    • (1978) Math. Comput. , vol.32 , pp. 175-199
    • Winograd, S.1
  • 11
    • 0021755317 scopus 로고
    • Split-radix FFT algorithm
    • Jan
    • P. Duhamel and H. Hollmann, “Split-radix FFT algorithm,” Electron. Lett., vol. 20, pp. 14–16, Jan. 1984.
    • (1984) Electron. Lett. , vol.20 , pp. 14-16
    • Duhamel, P.1    Hollmann, H.2
  • 12
    • 0014363340 scopus 로고
    • An economical method for calculating the discrete Fourier transform
    • Washington, DC
    • R, Yavne, “An economical method for calculating the discrete Fourier transform,” in AFIPS Proc., vol. 33, Fall Joint Comput. Conf., Washington, DC, 1968, pp. 115–125.
    • (1968) AFIPS Proc. , vol.33 , pp. 115-125
    • Yavne, R.1
  • 13
    • 0021481259 scopus 로고
    • Simple FFT and DCT algorithms with reduced number of operations
    • July
    • M. Vetterli and H. J. Nussbaumer, “Simple FFT and DCT algorithms with reduced number of operations,” Signal Processing, vol. 6, pp. 267–278, July 1984.
    • (1984) Signal Processing , vol.6 , pp. 267-278
    • Vetterli, M.1    Nussbaumer, H.J.2
  • 14
    • 0021473509 scopus 로고
    • Fast algorithms for the discrete W transforms and the discrete Fourier transform
    • Aug
    • Z. Wang, “Fast algorithms for the discrete W transforms and the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 803–816, Aug. 1984.
    • (1984) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-32 , pp. 803-816
    • Wang, Z.1
  • 15
    • 0021470438 scopus 로고
    • Recursive cyclotomic factorization—A new algorithm For calculating the discrete Fourier transform
    • Apr
    • J. B. Martens, “Recursive cyclotomic factorization—A new algorithm For calculating the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 750–761, Apr. 1984.
    • (1984) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-32 , pp. 750-761
    • Martens, J.B.1
  • 16
    • 0021406281 scopus 로고
    • Discrete Fourier transform algorithms for real valued sequences
    • Apr
    • J.B.Martens, “Discrete Fourier transform algorithms for real valued sequences,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 390–396, Apr. 1984.
    • (1984) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-32 , pp. 390-396
    • Martens, J.B.1
  • 17
    • 0000990936 scopus 로고
    • A fast Fourier transform algorithm for real-valued series
    • Oct
    • G. D. Bergland, “A fast Fourier transform algorithm for real-valued series,” Commun. ACM, vol. 11, pp. 703–710, Oct. 1968.
    • (1968) Commun. ACM , vol.11 , pp. 703-710
    • Bergland, G.D.1
  • 18
    • 0015473543 scopus 로고
    • A fast Fourier transform algorithm for symmetric real- series
    • Dec
    • H. Ziegler, “A fast Fourier transform algorithm for symmetric real- series,” IEEE Trans. Audio Electroacoust., vol. AE-20, pp. 353–356, Dec. 1972.
    • (1972) IEEE Trans. Audio Electroacoust. , vol.AE-20 , pp. 353-356
    • Ziegler, H.1
  • 19
    • 0021476533 scopus 로고
    • Existence of a 2-FFT algorithm with a number of multiplications lower than 2n+l
    • Aug
    • P. Duhamel and H. Hollmann, “Existence of a 2”-FFT algorithm with a number of multiplications lower than 2 n+l,” Electron. Lett., vol. 20, pp. 690–692, Aug. 1984.
    • (1984) Electron , vol.20 , pp. 690-692
    • Duhamel, P.1    Hollmann, H.2
  • 20
    • 0017981049 scopus 로고
    • On the computation of the discrete cosine transform
    • June
    • M. J. Narasimha and A. M. Peterson, “On the computation of the discrete cosine transform,” IEEE Trans. Commun., vol. COM-26, pp. 934–936, June 1978.
    • (1978) IEEE Trans. Commun. , vol.COM-26 , pp. 934-936
    • Narasimha, M.J.1    Peterson, A.M.2
  • 22
    • 84939374316 scopus 로고    scopus 로고
    • FFT’s of signals with symmetries and application to autocorrelation computation
    • Madrid, Spain
    • M. Vetterli, “FFT’s of signals with symmetries and application to autocorrelation computation,” submitted to MELECON 85, Madrid, Spain.
    • MELECON 85
    • Vetterli, M.1
  • 23
    • 0022252066 scopus 로고
    • Fast 2-D discrete cosine transform
    • Tampa, FL, Mar
    • M.Vetterli, “Fast 2-D discrete cosine transform,” accepted for publication, ICASSP’85, Tampa, FL, Mar. 1985.
    • (1985) ICASSP’85
    • Vetterli, M.1
  • 24
    • 0022219183 scopus 로고
    • Multiply/add tradeoff in length 2n FFT algorithms
    • M. T. Heideman and C. S. Burrus, “Multiply/add tradeoff in length 2n+l FFT algorithms,” ICASSP’85, pp. 780–783, 1985.
    • (1985) ICASSP’85 , pp. 780-783
    • Heideman, M.T.1    Burrus, C.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.