메뉴 건너뛰기




Volumn 34, Issue 1, 1986, Pages 91-95

On the Number of Multiplications Necessary to Compute a Length-2n DFT

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL TRANSFORMATIONS - FAST FOURIER TRANSFORMS;

EID: 0022667883     PISSN: 00963518     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASSP.1986.1164785     Document Type: Article
Times cited : (51)

References (23)
  • 1
    • 84968470212 scopus 로고
    • An algorithm for the machine calculation of complex Fourier series
    • Apr.
    • J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, Apr. 1965.
    • (1965) Math. Comput. , vol.19 , pp. 297-301
    • Cooley, J.W.1    Tukey, J.W.2
  • 2
    • 84968509698 scopus 로고
    • A fast Fourier transform algorithm using base 8 iterations
    • Apr.
    • G. D. Bergland, “A fast Fourier transform algorithm using base 8 iterations,” Math. Comput., vol. 22, pp. 275–279, Apr. 1968.
    • (1968) Math. Comput. , vol.22 , pp. 275-279
    • Bergland, G.D.1
  • 3
    • 0014363340 scopus 로고
    • An economical method for calculating the discrete Fourier transform
    • Part 1, Spartan, Washington, DC
    • R. Yavne, “An economical method for calculating the discrete Fourier transform,” in Fall Joint Comput. Conf., AFIPS Conf. Proc., vol. 33, part 1, Spartan, Washington, DC, 1968, pp. 115–125.
    • (1968) Fall Joint Comput. Conf., AFIPS Conf. Proc. , vol.33 , pp. 115-125
    • Yavne, R.1
  • 4
    • 0021755317 scopus 로고
    • ‘Split radix’ FFT algorithm
    • Jan. 5
    • P. Duhamel and H. Hollmann, “‘Split radix’ FFT algorithm,” Elec tron. Lett., vol. 20, pp. 14–16, Jan. 5, 1984.
    • (1984) Elec tron. Lett. , vol.20 , pp. 14-16
    • Duhamel, P.1    Hollmann, H.2
  • 8
    • 0020332039 scopus 로고
    • Very fast computation of the radix-2 discrete Fourier transform
    • Aug.
    • R. D. Preuss, “Very fast computation of the radix-2 discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 595–607, Aug. 1982.
    • (1982) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-30 , pp. 595-607
    • Preuss, R.D.1
  • 9
    • 0021481259 scopus 로고
    • Simple FFT and DCT algorithms with reduced number of operations
    • Aug.
    • M. Vetterli and H. J. Nussbaumer, “Simple FFT and DCT algorithms with reduced number of operations,” Signal Processing, vol. 6, pp. 267–278, Aug. 1984.
    • (1984) Signal Processing , vol.6 , pp. 267-278
    • Vetterli, M.1    Nussbaumer, H.J.2
  • 10
    • 0021470438 scopus 로고
    • Recursive cyclotomic factorization—A new algorithm for calculating the discrete Fourier transform
    • Aug.
    • J.-B. Martens, “Recursive cyclotomic factorization—A new algorithm for calculating the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 750–761, Aug. 1984.
    • (1984) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-32 , pp. 750-761
    • Martens, J.-B.1
  • 11
    • 0017153710 scopus 로고
    • On computing the discrete Fourier transform
    • Apr.
    • S. Winograd, “On computing the discrete Fourier transform,” Proc. Nat. Acad. Sci. USA, vol. 73, pp. 1005–1006, Apr. 1976.
    • (1976) Proc. Nat. Acad. Sci. USA , vol.73 , pp. 1005-1006
    • Winograd, S.1
  • 12
    • 84966217500 scopus 로고
    • On computing the discrete Fourier transform
    • Jan.
    • —, “On computing the discrete Fourier transform,” Math. Comput., vol. 32, pp. 175–199, Jan. 1978.
    • (1978) Math. Comput. , vol.32 , pp. 175-199
    • Winograd, S.1
  • 13
    • 41449119182 scopus 로고
    • On the multiplicative complexity of the discrete Fourier transform
    • May
    • —, “On the multiplicative complexity of the discrete Fourier transform,” Advances Math., vol. 32, pp. 83–117, May 1979.
    • (1979) Advances Math. , vol.32 , pp. 83-117
    • Winograd, S.1
  • 15
    • 84945713283 scopus 로고
    • Application of complexity of computations to signal processing
    • J. C. Simon and R. M. Haralick, Eds. Reidel: Dordrecht
    • —, “Application of complexity of computations to signal processing,” in Digital Image Processing, J. C. Simon and R. M. Haralick, Eds. Reidel: Dordrecht, 1981, pp. 1–17.
    • (1981) Digital Image Processing , pp. 1-17
    • Winograd, S.1
  • 16
    • 33645676551 scopus 로고
    • On the number of active *-operations needed to compute the discrete Fourier transform
    • May
    • B. Mescheder, “On the number of active *-operations needed to compute the discrete Fourier transform,” Acta Informatica, vol. 13, pp. 383–408, May 1980.
    • (1980) Acta Informatica , vol.13 , pp. 383-408
    • Mescheder, B.1
  • 17
    • 0021476533 scopus 로고
    • Existence of a 2n FFT algorithm with a number of multiplications lower than 2n + 1
    • Aug. 16
    • P. Duhamel and H. Hollmann, “Existence of a 2 n FFT algorithm with a number of multiplications lower than 2 n + 1,” Electron. Lett., vol. 20, pp. 690–692, Aug. 16, 1984.
    • (1984) Electron. Lett. , vol.20 , pp. 690-692
    • Duhamel, P.1    Hollmann, H.2
  • 20
    • 84945711812 scopus 로고
    • On multiplication of polynomials modulo a polynomial
    • May
    • —, “On multiplication of polynomials modulo a polynomial,” SIAM J. Comput., vol. 9, pp. 225–229, May 1980.
    • (1980) SIAM J. Comput. , vol.9 , pp. 225-229
    • Winograd, S.1
  • 21
    • 41449090127 scopus 로고
    • The multiplicative complexity of certain semilinear systems defined by polynomials
    • L. Auslander and S. Winograd, “The multiplicative complexity of certain semilinear systems defined by polynomials,” Adv. Appl. Math., vol. 1, no. 3, pp. 257-299, 1980.
    • (1980) Adv. Appl. Math. , vol.1 , Issue.3 , pp. 257-299
    • Auslander, L.1    Winograd, S.2
  • 23
    • 30244507696 scopus 로고
    • The multiplicative complexity of the discrete Fourier transform
    • L. Auslander, E. Feig, and S. Winograd, “The multiplicative complexity of the discrete Fourier transform,” Adv. Appl. Math., vol. 5, pp. 87-109, Mar. 1984.
    • (1984) Adv. Appl. Math. , vol.5 , pp. 87-109
    • Auslander, L.1    Feig, E.2    Winograd, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.