-
2
-
-
0012143950
-
A survey of Lyapunov's second method
-
Princeton, NJ: Princeton University Press
-
H. A. Antosiewicz, “A survey of Lyapunov's second method,” in Contributions to the Theory of Nonlinear Oscillations, vol. 4. Princeton, NJ: Princeton University Press, 1958, pp. 141–166.
-
(1958)
Contributions to the Theory of Nonlinear Oscillations
, vol.4
, pp. 141-166
-
-
Antosiewicz, H.A.1
-
5
-
-
33645135239
-
Mathematical Methods for the Study of Automatic Control Systems
-
Israel: Jerusalem Academic Press
-
V. I. Zubov, Mathematical Methods for the Study of Automatic Control Systems. Israel: Jerusalem Academic Press, 1962.
-
(1962)
-
-
Zubov, V.I.1
-
8
-
-
77956374332
-
Control engineering applications of V.I. Zubov's construction procedure for Lyapunov functions
-
Apr.
-
S. G. Margolis and W. G. Vogt, “Control engineering applications of V.I. Zubov's construction procedure for Lyapunov functions,” IEEE Trans. Automat. Contr., vol. AC-8, pp. 104–113, Apr. 1963.
-
(1963)
IEEE Trans. Automat. Contr.
, vol.AC-8
, pp. 104-113
-
-
Margolis, S.G.1
Vogt, W.G.2
-
9
-
-
78049312634
-
Optimization of the Zubov and Ingwerson methods for constructing Lyapunov functions
-
May
-
J. R. Hewit and C. Storey, “Optimization of the Zubov and Ingwerson methods for constructing Lyapunov functions,” Electron. Lett., vol. 3, pp. 211–213, May 1967.
-
(1967)
Electron. Lett.
, vol.3
, pp. 211-213
-
-
Hewit, J.R.1
Storey, C.2
-
10
-
-
0014631780
-
Comparison of numerical methods in stability analysis
-
J. R. Hewit and C. Storey, “Comparison of numerical methods in stability analysis,” Int. J. Contr., vol. 10, pp. 687–701, 1969.
-
(1969)
Int. J. Contr.
, vol.10
, pp. 687-701
-
-
Hewit, J.R.1
Storey, C.2
-
11
-
-
67349162439
-
Discussion of ‘Control engineering application of V. I. Zubov's construction procedure for Lyapunov functions'” and “Author's comment
-
Apr.
-
F. Fallside, M. R. Patel, and M. Etherthon, “Discussion of ‘Control engineering application of V. I. Zubov's construction procedure for Lyapunov functions'” and “Author's comment,” IEEE Trans. Automat. Contr., vol. AC-10, pp. 220–222, Apr. 1965.
-
(1965)
IEEE Trans. Automat. Contr.
, vol.AC-10
, pp. 220-222
-
-
Fallside, F.1
Patel, M.R.2
Etherthon, M.3
-
12
-
-
0040733471
-
Numerical applications of Lyapunov stability theory
-
Stanford, CA
-
J. J. Rodden, “Numerical applications of Lyapunov stability theory,” Preprints JACC, Stanford, CA, 261–268.
-
Preprints JACC
, pp. 261-268
-
-
Rodden, J.J.1
-
13
-
-
84913048158
-
Nonlinear power system stability study by Lyapunov function and Zubov's method
-
Syst. Dec. Dec.
-
Y. Yu and K. Vongsuriya, “Nonlinear power system stability study by Lyapunov function and Zubov's method,” IEEE Trans. Power App., Syst., vol. PAS-86, pp. 1480–1485, Dec. 1967.
-
(1967)
IEEE Trans. Power App.
, vol.PAS-86
, pp. 1480-1485
-
-
Yu, Y.1
Vongsuriya, K.2
-
14
-
-
84911636168
-
Zubov's method and transient-stability problems of power systems
-
Aug.
-
A. K. De Sarkar and N. D. Rao, “Zubov's method and transient-stability problems of power systems,” Proc. Inst. Elec. Eng., vol. 118, pp. 1035–1040, Aug. 1971.
-
(1971)
Proc. Inst. Elec. Eng.
, vol.118
, pp. 1035-1040
-
-
De Sarkar, A.K.1
Rao, N.D.2
-
15
-
-
84945001526
-
Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems
-
IFAC World Congr., Kyoto, Japan, Aug. paper 5.1.
-
A. Vannelli and M. Vidyasagar, “Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems,” Preprints 8th IFAC World Congr., Kyoto, Japan, Aug. 1981, paper 5.1.
-
(1981)
Preprints 8th
-
-
Vannelli, A.1
Vidyasagar, M.2
-
16
-
-
0001570715
-
Construction of the attraction region by Zubov's method
-
N. E. Kirin, R. A. Nelepin, and V. N. Baidaev, “Construction of the attraction region by Zubov's method,” J. Differential Equations, vol. 17, 871–880, 1982.
-
(1982)
J. Differential Equations
, vol.17
, pp. 871-880
-
-
Kirin, N.E.1
Nelepin, R.A.2
Baidaev, V.N.3
-
17
-
-
49949125774
-
Determination of the domain of stability
-
G. Burnand and G. Sarlos, “Determination of the domain of stability,” J. Math. Anal. Appl., vol. 23, pp. 714–722, 1968.
-
(1968)
J. Math. Anal. Appl.
, vol.23
, pp. 714-722
-
-
Burnand, G.1
Sarlos, G.2
-
18
-
-
0015417281
-
Decision surface estimate of nonlinear system stability domain by Lie series method
-
Oct.
-
J. Kormanik and C. C, Li, “Decision surface estimate of nonlinear system stability domain by Lie series method,” IEEE Trans. Automat. Contr., vol. AC-17, pp. 666–669, Oct. 1972.
-
(1972)
IEEE Trans. Automat. Contr.
, vol.AC-17
, pp. 666-669
-
-
Kormanik, J.1
Li, C.C.2
-
19
-
-
84942006575
-
The evaluation of the domain of attraction of nonlinear control systems with hybrid computing systems
-
Paris, France, paper 32.1.
-
I. Troch, “The evaluation of the domain of attraction of nonlinear control systems with hybrid computing systems,” in Proc. 5th IFAC World Congr. Paris, France, 1972, paper 32.1.
-
(1972)
Proc. 5th IFAC World Congr.
-
-
Troch, I.1
-
20
-
-
0016084969
-
Stability analysis of power systems using Lie series and pattern-recognition techniques
-
July
-
R. K. Bansal and R. Subramanian, “Stability analysis of power systems using Lie series and pattern-recognition techniques,” in Proc. Inst. Elec. Eng., vol. 121, pp. 623–629, July 1974.
-
(1974)
Proc. Inst. Elec. Eng.
, vol.121
, pp. 623-629
-
-
Bansal, R.K.1
Subramanian, R.2
-
21
-
-
0019047805
-
Application of the Lagrange-Charpit method to analyze the power system's stability
-
H. Miyagi and T. Taniguchi, “Application of the Lagrange-Charpit method to analyze the power system's stability,” Int. J. Contr., vol. 32, pp. 371–379, 1980.
-
(1980)
Int. J. Contr.
, vol.32
, pp. 371-379
-
-
Miyagi, H.1
Taniguchi, T.2
-
22
-
-
0019571032
-
Lagrange-Charpit method and stability problem of power systems
-
May
-
H. Miyagi and T. Taniguchi,, “Lagrange-Charpit method and stability problem of power systems,” Proc, Inst. Elec. Eng. vol. 128, pp. 117–122, May 1981.
-
(1981)
Proc, Inst. Elec. Eng.
, vol.128
, pp. 117-122
-
-
Miyagi, H.1
Taniguchi, T.2
-
23
-
-
0019602352
-
Numerical determination of domains of attraction for electrical power systems using the method of Zubov
-
M. Abu Hassan and C. Storey, “Numerical determination of domains of attraction for electrical power systems using the method of Zubov,” Int. J. Contr., vol. 34, 371–381, 1981.
-
(1981)
Int. J. Contr.
, vol.34
, pp. 371-381
-
-
Abu Hassan, M.1
Storey, C.2
-
24
-
-
84944983508
-
On a new partial differential equation for the stability analysis of time invariant control systems
-
G. P. Szego, “On a new partial differential equation for the stability analysis of time invariant control systems,” SIAM J. Contr., vol. 1, pp. 63–75, 1963.
-
(1963)
SIAM J. Contr.
, vol.1
, pp. 63-75
-
-
Szego, G.P.1
-
25
-
-
84911652576
-
New methods for constructing Lyapunov functions for time-invariant control systems
-
Basel
-
G. P. Szego, “New methods for constructing Lyapunov functions for time-invariant control systems,” in Proc. 2nd IFAC World Congr., Basel, 1963, pp. 584–589.
-
(1963)
Proc. 2nd IFAC World Congr.
, pp. 584-589
-
-
Szego, G.P.1
-
26
-
-
84911592861
-
A remark on ‘A new partial differential equation for the stability analysis of time invariant control system
-
G. P. Szego and G. K. Geiss, “A remark on ‘A new partial differential equation for the stability analysis of time invariant control system,”' SIAM J. Contr., vol. 1, pp. 369–376, 1963.
-
(1963)
SIAM J. Contr.
, vol.1
, pp. 369-376
-
-
Szego, G.P.1
Geiss, G.K.2
-
27
-
-
0016090848
-
Application of generalized Zubov's method to power system stability
-
F. S. Prabhakara, A. H. El-Abiad, and A. J. Koivo, “Application of generalized Zubov's method to power system stability,” Int. J. Contr., vol. 20, pp. 203–212, 1974.
-
(1974)
Int. J. Contr.
, vol.20
, pp. 203-212
-
-
Prabhakara, F.S.1
El-Abiad, A.H.2
Koivo, A.J.3
-
28
-
-
33646976814
-
Some extensions of Lyapunov's second method
-
J. P. La Salle, “Some extensions of Lyapunov's second method,” IRE Trans. Circuits Theory, vol. CT-7, pp. 520–527, 1960.
-
(1960)
IRE Trans. Circuits Theory
, vol.CT-7
, pp. 520-527
-
-
La Salle, J.P.1
-
29
-
-
0345213585
-
The generalization of Lyapunov functions
-
New York: Academic
-
D. G. Shultz, “The generalization of Lyapunov functions,” in Advances in Control Systems, C. T. Leondes, Ed. New York: Academic, 1965, pp. 1–64.
-
(1965)
Advances in Control Systems
, pp. 1-64
-
-
Shultz, D.G.1
Leondes, C.T.2
-
30
-
-
0344350919
-
A modified Lyapunov method for nonlinear stability analysis
-
May
-
D. R. Ingwerson, “A modified Lyapunov method for nonlinear stability analysis,” IRE Trans. Automat. Contr., vol. AC-6, pp. 199–210, May 1961.
-
(1961)
IRE Trans. Automat. Contr.
, vol.AC-6
, pp. 199-210
-
-
Ingwerson, D.R.1
-
31
-
-
84913091567
-
A contribution to Lyapunov's second method: Nonlinear autonomous systems
-
New York: Academic
-
G. P. Szego, “A contribution to Lyapunov's second method: Nonlinear autonomous systems,” in International Symposium in Nonlinear Differential Equations and Non-linear Mechanics, J. P. La Salle and S. Lefschetz, Eds. New York: Academic, 1963, 421–430.
-
(1963)
International Symposium in Nonlinear Differential Equations and Non-linear Mechanics
, pp. 421-430
-
-
Szego, G.P.1
La Salle, J.P.2
Lefschetz, S.3
-
32
-
-
77950804002
-
Numerical application of Szego's method for constructing Lyapunov functions
-
Feb.
-
J. R. Hewit and C Storey, “Numerical application of Szego's method for constructing Lyapunov functions,” IEEE Trans. Automat. Contr. vol. AC-14, pp. 106–108, Feb. 1969.
-
(1969)
IEEE Trans. Automat. Contr
, vol.AC-14
, pp. 106-108
-
-
Hewit, J.R.1
Storey, C.2
-
33
-
-
0004156056
-
The variable gradient method for generating Lyapunov functions
-
Sept.
-
D. G. Schultz and J. E. Gibson, “The variable gradient method for generating Lyapunov functions,” AI EE Trans. Appl. Ind., vol. 81, pp. 203–210, Sept. 1962.
-
(1962)
AI EE Trans. Appl. Ind.
, vol.81
, pp. 203-210
-
-
Schultz, D.G.1
Gibson, J.E.2
-
34
-
-
0014835964
-
An algorithm for constructing Lyapunov functions based on the variable gradient method
-
Aug.
-
C. C. Hang and J. A. Chang, “An algorithm for constructing Lyapunov functions based on the variable gradient method,” IEEE Trans. Automat. Contr., vol. AC-15, pp. 510–512, Aug. 1970.
-
(1970)
IEEE Trans. Automat. Contr.
, vol.AC-15
, pp. 510-512
-
-
Hang, C.C.1
Chang, J.A.2
-
36
-
-
84981800540
-
Stability of high dimensional nonlinear systems using Krasovskii's theorem
-
Mar.
-
A. J. Berger and L. Lapidus, “Stability of high dimensional nonlinear systems using Krasovskii's theorem,” AIChE J., vol. 15, pp. 171—177, Mar. 1969.
-
(1969)
AIChE J.
, vol.15
, pp. 171-177
-
-
Berger, A.J.1
Lapidus, L.2
-
37
-
-
84913065817
-
Stability-boundary approximations for relay control systems via a steepest-ascent construction of Lyapunov functions
-
June
-
S. Weissenberger, “Stability-boundary approximations for relay control systems via a steepest-ascent construction of Lyapunov functions,” Trans. ASME J. Basic Eng., vol. 82, pp. 419–428, June 1966.
-
(1966)
Trans. ASME J. Basic Eng.
, vol.82
, pp. 419-428
-
-
Weissenberger, S.1
-
38
-
-
0015125878
-
A computational method for determining quadratic Lyapunov functions for non-linear systems
-
E. J. Davison and E. M. Kurak, “A computational method for determining quadratic Lyapunov functions for non-linear systems,” Automatica, vol. 7, pp. 627–636, 1971.
-
(1971)
Automatica
, vol.7
, pp. 627-636
-
-
Davison, E.J.1
Kurak, E.M.2
-
39
-
-
0016496131
-
The'behavior of optimal Lyapunov functions
-
D. N. Shields and C. Storey, “The'behavior of optimal Lyapunov functions,” Int. J. Contr., vol. 21, pp. 561–573, 1975.
-
(1975)
Int. J. Contr.
, vol.21
, pp. 561-573
-
-
Shields, D.N.1
Storey, C.2
-
40
-
-
0020290793
-
Stability analysis of complex dynamical systems. Some computational methods
-
A. N. Michel, N. R. Sarabudla, and R. K. Miller, “Stability analysis of complex dynamical systems. Some computational methods,” Cir. Syst. Signal Processing, vol. 1, pp. 171–202, 1982.
-
(1982)
Cir. Syst. Signal Processing
, vol.1
, pp. 171-202
-
-
Michel, A.N.1
Sarabudla, N.R.2
Miller, R.K.3
-
41
-
-
33645769861
-
On the stability of systems having several equilibrium states
-
E. Noldus, “On the stability of systems having several equilibrium states,” Appl. Sci. Res., vol. 21, pp. 218–233, 1969.
-
(1969)
Appl. Sci. Res.
, vol.21
, pp. 218-233
-
-
Noldus, E.1
-
42
-
-
0015603742
-
The computation of stability regions for systems with many singular points
-
E. Noldus, A. Galle, and L. Josson, “The computation of stability regions for systems with many singular points,” Int. J. Contr., vol. 17, pp. 641–652, 1973.
-
(1973)
Int. J. Contr.
, vol.17
, pp. 641-652
-
-
Noldus, E.1
Galle, A.2
Josson, L.3
-
43
-
-
0016337718
-
A new Lyapunov technique for stability analysis of chemical reactors
-
E. Noldus, J. Spriet, E. Verriest, and A. Van Cauwenberghe, “A new Lyapunov technique for stability analysis of chemical reactors,” Automatica, vol. 10, pp. 675–680, 1974.
-
(1974)
Automatica
, vol.10
, pp. 675-680
-
-
Noldus, E.1
Spriet, J.2
Verriest, E.3
Van Cauwenberghe, A.4
-
44
-
-
0017462009
-
New direct Lyapunov-type method for studying synchronization problems
-
E. J. Noldus, “New direct Lyapunov-type method for studying synchronization problems,” Automatica, vol. 13, pp. 139–151, 1977.
-
(1977)
Automatica
, vol.13
, pp. 139-151
-
-
Noldus, E.J.1
-
45
-
-
0017509056
-
A new frequency domain approach to certain transient stability problems in power systems analysis
-
E. J. Noldus, “A new frequency domain approach to certain transient stability problems in power systems analysis,” Int. J. Contr., vol. 26, pp. 33- 1977.
-
(1977)
Int. J. Contr.
, vol.26
, pp. 33
-
-
Noldus, E.J.1
-
46
-
-
0019637262
-
On the attractivity of imbedded systems
-
L. B. Jocic, “On the attractivity of imbedded systems,” Automatica, vol. 17, 853–860, 1981.
-
(1981)
Automatica
, vol.17
, pp. 853-860
-
-
Jocic, L.B.1
-
47
-
-
0019659585
-
Some constructive approaches in stability analysis
-
Apr.
-
A. N. Michel, N. R. Sarabudla, and R. K. Miller, “Some constructive approaches in stability analysis,” in Proc. 1981 Int. Symp. Circuit Syst., Apr. 1981, pp. 465–468.
-
(1981)
Proc. 1981 Int. Symp. Circuit Syst.
, pp. 465-468
-
-
Michel, A.N.1
Sarabudla, N.R.2
Miller, R.K.3
-
48
-
-
0019080199
-
Constructive stability and asymptotic stability of dynamical systems
-
Nov.
-
R. K. Brayton and C. H. Tong, “Constructive stability and asymptotic stability of dynamical systems,” IEEE Trans. Circuits Syst., vol. CAS-27, pp. 1121–1130, Nov. 1980.
-
(1980)
IEEE Trans. Circuits Syst.
, vol.CAS-27
, pp. 1121-1130
-
-
Brayton, R.K.1
Tong, C.H.2
-
49
-
-
0015110653
-
Direct methods for transient stability studies in power system analysis
-
Aug.
-
J. L. Willems, “Direct methods for transient stability studies in power system analysis,” IEEE Trans. Automat. Contr., vol. AC-16, pp. 332-341,Aug. 1971.
-
(1971)
IEEE Trans. Automat. Contr.
, vol.AC-16
, pp. 332-341
-
-
Willems, J.L.1
-
50
-
-
84909868224
-
Critical survey of transient stability studies of multi-machine power systems by Lyapunov's direct method
-
Conf on Circ. Syst. Theory, Oct.
-
M. Ribbens-Pavella, “Critical survey of transient stability studies of multi-machine power systems by Lyapunov's direct method,” in Proc. 9th Ann. Allerton Conf on Circ. Syst. Theory, Oct. 1971, pp. 751–767.
-
(1971)
Proc. 9th Ann. Allerton
, pp. 751-767
-
-
Ribbens-Pavella, M.1
-
51
-
-
43549115335
-
Stability theory-criteria for transient stability
-
Henniker, NH
-
A. A. Fouad, “Stability theory-criteria for transient stability” in Proc. Eng. Foundation Conf. Syst. Eng. for Power, Henniker, NH, 1975, 421–450.
-
(1975)
Proc. Eng. Foundation Conf. Syst. Eng. for Power
, pp. 421-450
-
-
Fouad, A.A.1
-
52
-
-
84912517435
-
Stability analysis of predator-prey models via the Lyapunov method
-
Laxen-burg, Austria
-
M. Gatto and S. Rinaldi, “Stability analysis of predator-prey models via the Lyapunov method,” in Analysis and Computation of Equilibria and Regions of Stability, H. R. Grumm, Ed. Laxen-burg, Austria, 1975, pp. 139–153.
-
(1975)
Analysis and Computation of Equilibria and Regions of Stability
, pp. 139-153
-
-
Gatto, M.1
Rinaldi, S.2
Grumm, H.R.3
-
53
-
-
0001528538
-
Finite regions of attraction for the problem of Lur'e
-
J. A. Walker and N. H. McClamroch, “Finite regions of attraction for the problem of Lur'e,” Int. J. Contr., vol. 6, pp. 331–336, 1967.
-
(1967)
Int. J. Contr.
, vol.6
, pp. 331-336
-
-
Walker, J.A.1
McClamroch, N.H.2
-
54
-
-
0001703121
-
Application of results from the absolute stability problem to the computation of finite stability domains
-
Feb.
-
S. Weissenberger, “Application of results from the absolute stability problem to the computation of finite stability domains,” IEEE Trans. Automat. Contr., vol. AC-13, pp. 124–125, Feb. 1968.
-
(1968)
IEEE Trans. Automat. Contr.
, vol.AC-13
, pp. 124-125
-
-
Weissenberger, S.1
-
55
-
-
84937647353
-
Comments on ‘Application of results from the absolute stability problem to the computation of finite stability domains
-
S. Weissenberger, “Comments on ‘Application of results from the absolute stability problem to the computation of finite stability domains,” IEEE Trans. Automat. Contr., vol. AC-14, 109, 1969.
-
(1969)
IEEE Trans. Automat. Contr.
, vol.AC-14
, Issue.109
-
-
Weissenberger, S.1
-
56
-
-
0039141275
-
Stability of control systems with multiple nonlinearities
-
Sept.
-
B. D. O. Anderson, “Stability of control systems with multiple nonlinearities,” J. Franklin Inst., vol. 282, pp. 155–160, Sept. 1966.
-
(1966)
J. Franklin Inst.
, vol.282
, pp. 155-160
-
-
Anderson, B.D.O.1
-
57
-
-
0014777283
-
The application of Lyapunov methods to the computation of transient stability regions for multimachine power systems
-
Mar./June
-
J. L. Willems and J. C. Willems, “The application of Lyapunov methods to the computation of transient stability regions for multimachine power systems,” IEEE Trans. Power App. Syst., vol. PAS-89, pp. 795–801, Mar./June 1970.
-
(1970)
IEEE Trans. Power App. Syst.
, vol.PAS-89
, pp. 795-801
-
-
Willems, J.L.1
Willems, J.C.2
-
58
-
-
0014926676
-
Optimum Lyapunov functions and transient stability regions for multimachine power systems
-
Mar.
-
J. L. Willems, “Optimum Lyapunov functions and transient stability regions for multimachine power systems,” Proc. Inst. Elec. Eng., vol. 117, pp. 573–578, Mar. 1970.
-
(1970)
Proc. Inst. Elec. Eng.
, vol.117
, pp. 573-578
-
-
Willems, J.L.1
-
59
-
-
84914605145
-
Estimating the domain of attraction for systems with multiple non-linearities
-
W. R. Foster and M. S. Davies, “Estimating the domain of attraction for systems with multiple non-linearities,” Int. J. Contr., vol. 15, pp. 1001–1003, 1972.
-
(1972)
Int. J. Contr
, vol.15
, pp. 1001-1003
-
-
Foster, W.R.1
Davies, M.S.2
-
60
-
-
84945001528
-
Transient stability of multimachine systems by Popov's method
-
July -CP-667.
-
M. A. Pai and M. Anandomohan, “Transient stability of multimachine systems by Popov's method,” IEEE Summer Power Meet., July 1970, 70-CP-667.
-
(1970)
IEEE Summer Power Meet.
-
-
Pai, M.A.1
Anandomohan, M.2
-
61
-
-
84944993794
-
Transient stability studies in power systems using Lyapunov-Popov approach
-
Paris, France, paper 31.5.
-
M. A. Pai, “Transient stability studies in power systems using Lyapunov-Popov approach,” in Proc. 5th IFAC World Congr., Paris, France, 1972, paper 31.5.
-
(1972)
Proc 5th IFAC World Congr.
-
-
Pai, M.A.1
-
62
-
-
84938017382
-
Stability of continuous time dynamical systems with M-feedback nonlinearities
-
Nov.
-
K. S. Narendra and C. P. Neumann, “Stability of continuous time dynamical systems with M-feedback nonlinearities,” AIAA J., vol. 5, pp. 2012–2027, Nov. 1967.
-
(1967)
AIAA J.
, vol.5
, pp. 2012-2027
-
-
Narendra, K.S.1
Neumann, C.P.2
-
63
-
-
0014600756
-
The computation of finite stability regions by means of open Lyapunov surfaces
-
J. L. Willems, “The computation of finite stability regions by means of open Lyapunov surfaces,” Int. J. Contr., vol. 10, pp. 537–544, 1969.
-
(1969)
Int. J. Contr.
, vol.10
, pp. 537-544
-
-
Willems, J.L.1
-
64
-
-
0015331846
-
Regions of transient stability for power systems involving saliency using the Popov criterion
-
May
-
T. L. Chang and M. S. Davies, “Regions of transient stability for power systems involving saliency using the Popov criterion,” Proc. Inst. Elec. Eng., vol. 119, 625–628, May 1972.
-
(1972)
Proc. Inst. Elec. Eng.
, vol.119
, pp. 625-628
-
-
Chang, T.L.1
Davies, M.S.2
-
65
-
-
0016657343
-
Improved technique for computation of power-system transient-stability regions
-
Dec.
-
R. Jha and A. K. Mahalanabis, “Improved technique for computation of power-system transient-stability regions,” Proc. Inst. Elec. Eng., vol. 122, pp. 1402–1404, Dec. 1975.
-
(1975)
Proc. Inst. Elec. Eng.
, vol.122
, pp. 1402-1404
-
-
Jha, R.1
Mahalanabis, A.K.2
-
66
-
-
0017013411
-
Finite regions of attraction for multinonlinear systems and its application to the power system stability problem
-
Oct.
-
M. A. Pai and C. L. Narayana, “Finite regions of attraction for multinonlinear systems and its application to the power system stability problem,” IEEE Trans. Automat. Contr., vol. AC-21, pp. 716–721, Oct. 1976.
-
(1976)
IEEE Trans. Automat. Contr.
, vol.AC-21
, pp. 716-721
-
-
Pai, M.A.1
Narayana, C.L.2
-
67
-
-
0019065035
-
Transient stability analysis of multimachine power systems with field flux decays via Lyapunov's direct method
-
Sept./Oct.
-
N. Kakimoto, Y. Ohsawa, and M. Hayashi, “Transient stability analysis of multimachine power systems with field flux decays via Lyapunov's direct method,” IEEE Trans. Power App. Syst., vol. PAS-99, pp. 1819–1827, Sept./Oct. 1980.
-
(1980)
IEEE Trans. Power App. Syst.
, vol.PAS-99
, pp. 1819-1827
-
-
Kakimoto, N.1
Ohsawa, Y.2
Hayashi, M.3
-
68
-
-
84939728610
-
Tracking function approach to practical stability and ultimate boundedness
-
Jan.
-
W. O. Paradis and D. D. Perlmutter, “Tracking function approach to practical stability and ultimate boundedness,” AIChE J., vol. 12, pp. 13–136, Jan. 1966.
-
(1966)
AIChE J.
, vol.12
, pp. 13-136
-
-
Paradis, W.O.1
Perlmutter, D.D.2
-
69
-
-
77953524526
-
Computer application of the tracking function approach to practical stability
-
J. R. Hewit and C. Storey, “Computer application of the tracking function approach to practical stability,” Electron. Lett., vol. 2, pp. 408–409, 1966.
-
(1966)
Electron. Lett.
, vol.2
, pp. 408-409
-
-
Hewit, J.R.1
Storey, C.2
-
70
-
-
84944979977
-
Practical stability in polar co-ordinates
-
Dec.
-
J. R. Hewit and C. Storey, “Practical stability in polar co-ordinates,” Electron. Lett., vol. 3, pp. 558–559, Dec. 1967.
-
(1967)
Electron. Lett.
, vol.3
, pp. 558-559
-
-
Hewit, J.R.1
Storey, C.2
-
71
-
-
84944982804
-
Computer program for obtaining regions of practical stability for second-order, autonomous systems
-
Sept.
-
J. R. Hewit and C. Storey, “Computer program for obtaining regions of practical stability for second-order, autonomous systems,” Proc. Inst. Elec. Eng., vol. 114, pp. 1347–1350, Sept. 1967.
-
(1967)
Proc. Inst. Elec. Eng.
, vol.114
, pp. 1347-1350
-
-
Hewit, J.R.1
Storey, C.2
-
72
-
-
84913036843
-
A new approach to the stability and control of nonlinear processes
-
Jan.
-
J. F. Leathrum, E. F. Johnson, and L. Lapidus, “A new approach to the stability and control of nonlinear processes,” AIChE J., vol. 10, pp. 16–25, Jan. 1964.
-
(1964)
AIChE J.
, vol.10
, pp. 16-25
-
-
Leathrum, J.F.1
Johnson, E.F.2
Lapidus, L.3
-
73
-
-
1542548058
-
An averaging technique for stability analysis
-
R. Luus and L. Lapidus, “An averaging technique for stability analysis,” Chem. Eng. Sci., vol. 21, pp. 159–181, 1966.
-
(1966)
Chem. Eng Sci.
, vol.21
, pp. 159-181
-
-
Luus, R.1
Lapidus, L.2
-
74
-
-
84921965757
-
An estimate of the stable initial condition region based on the describing function
-
Oct.
-
H. N. Scofield, “An estimate of the stable initial condition region based on the describing function,” IEEE Trans. Automat. Contr., vol. AC-10, pp. 484–485, Oct. 1965.
-
(1965)
IEEE Trans. Automat. Contr.
, vol.AC-10
, pp. 484-485
-
-
Scofield, H.N.1
-
75
-
-
84969016304
-
A method for the determination of the domain of stability of second-order nonlinear autonomous systems
-
June
-
E. F. Infante and L. G. Clark, “A method for the determination of the domain of stability of second-order nonlinear autonomous systems,” J. Appl. Mech., vol. 86, pp. 315–320, June 1964.
-
(1964)
J. Appl. Mech.
, vol.86
, pp. 315-320
-
-
Infante, E.F.1
Clark, L.G.2
-
76
-
-
0038535426
-
Planar regions of attraction
-
L. B. Jocic, “Planar regions of attraction,” IEEE Trans. Automat. Contr., vol. AC-27, 708–710, 1982.
-
(1982)
IEEE Trans. Automat. Contr.
, vol.AC-27
, pp. 708-710
-
-
Jocic, L.B.1
-
77
-
-
84916138403
-
A computational method for determining the stability region of a second-order non-linear autonomous system
-
E. J. Davison and K. C. Cowan, “A computational method for determining the stability region of a second-order non-linear autonomous system,” Int. J. Contr., vol. 9, pp. 349–357, 1969.
-
(1969)
Int. J. Contr.
, vol.9
, pp. 349-357
-
-
Davison, E.J.1
Cowan, K.C.2
-
78
-
-
0016026665
-
Numerical algorithm for implementing Zubov's construction in two-dimensional systems
-
Feb.
-
J. Texter, “Numerical algorithm for implementing Zubov's construction in two-dimensional systems,” IEEE Trans. Automat. Contr., vol. AC-19, 62–63, Feb. 1974.
-
(1974)
IEEE Trans. Automat. Contr.
, vol.AC-19
, pp. 62-63
-
-
Texter, J.1
-
79
-
-
0016530421
-
Region of transient stability in state space for synchronous generator
-
July
-
H. Yee, “Region of transient stability in state space for synchronous generator,” Proc. Inst. Elec. Eng., vol. 122, pp. 739–744, July 1975.
-
(1975)
Proc. Inst. Elec. Eng.
, vol.122
, pp. 739-744
-
-
Yee, H.1
-
80
-
-
0017416547
-
Transient stability analysis of multimachine power systems by the method of hyperplanes
-
Jan./Feb.
-
H. Yee and B. D. Spalding, “Transient stability analysis of multimachine power systems by the method of hyperplanes,” IEEE Trans. Power App. Syst., vol. PAS-96, pp. 276–284, Jan./Feb. 1977.
-
(1977)
IEEE Trans. Power App. Syst.
, vol.PAS-96
, pp. 276-284
-
-
Yee, H.1
Spalding, B.D.2
-
81
-
-
0018023808
-
Transient stability region of synchronous generator with saturable exciter
-
Oct.
-
H. Yee and M. J. Muir, “Transient stability region of synchronous generator with saturable exciter,” Proc. Inst. Elec. Eng., vol. 125, pp. 943–947, Oct. 1978.
-
(1978)
Proc. Inst. Elec. Eng.
, vol.125
, pp. 943-947
-
-
Yee, H.1
Muir, M.J.2
-
82
-
-
34047101224
-
Transient stability of multimachine systems with saturable exciter
-
Jan.
-
H. Yee and M. J. Muir, “Transient stability of multimachine systems with saturable exciter,” Proc. Inst. Elec. Eng., vol. 127, pp. 9–14, Jan. 1980.
-
(1980)
Proc. Inst. Elec. Eng.
, vol.127
, pp. 9-14
-
-
Yee, H.1
Muir, M.J.2
-
83
-
-
0018005592
-
Estimating the domain of attraction of nonlinear feedback systems
-
Aug.
-
K. A. Loparo and G. L. Blankenship, “Estimating the domain of attraction of nonlinear feedback systems,” IEEE Trans. Automat. Contr., vol. AC-23, pp. 602–608, Aug. 1978.
-
(1978)
IEEE Trans. Automat. Contr.
, vol.AC-23
, pp. 602-608
-
-
Loparo, K.A.1
Blankenship, G.L.2
-
84
-
-
0021444610
-
New techniques for constructing asymptotic stability regions for nonlinear systems
-
June
-
R. Genesio and A. Vicino, “New techniques for constructing asymptotic stability regions for nonlinear systems,” IEEE Trans. Circuits Syst., vol. CAS-31, pp. 574–581, June 1984.
-
(1984)
IEEE Trans. Circuits Syst.
, vol.CAS-31
, pp. 574-581
-
-
Genesio, R.1
Vicino, A.2
-
85
-
-
0003668610
-
Non-linear Differential Equations
-
New York: Macmillan
-
G. Sansone and R. Conti, Non-linear Differential Equations. New York: Macmillan, 1964.
-
(1964)
-
-
Sansone, G.1
Conti, R.2
-
86
-
-
84942214630
-
On the continuation of solutions of differential equations
-
N. P. Erugin, “On the continuation of solutions of differential equations,” Prikl. Mat. Mekh., vol. 15, pp. 55–58, 1951.
-
(1951)
Prikl. Mat. Mekh.
, vol.15
, pp. 55-58
-
-
Erugin, N.P.1
-
87
-
-
84911609977
-
Certain general questions in the theory of the stability of motion
-
N. P. Erugin, “Certain general questions in the theory of the stability of motion,” Prikl. Mat. Mekh., vol. 15, pp. 227–236, 1951.
-
(1951)
Prikl. Mat. Mekh.
, vol.15
, pp. 227-236
-
-
Erugin, N.P.1
-
91
-
-
0000716368
-
The structure of the level surfaces of a Lyapunov function
-
F. W. Wilson, “The structure of the level surfaces of a Lyapunov function,” J. Differential Equations, vol. 3, pp. 323–329, 1967.
-
(1967)
J. Differential Equations
, vol.3
, pp. 323-329
-
-
Wilson, F.W.1
-
93
-
-
84945001529
-
Study of recurrence relationships and their applications by the Laboratoire d'Automatique et de ses Applications Spatiales
-
Paris, France, paper 32.3.
-
J. Lagasse and C. Mira, “Study of recurrence relationships and their applications by the Laboratoire d'Automatique et de ses Applications Spatiales,” in Proc. 5th World Congr., Paris, France, 1972, paper 32.3.
-
(1972)
Proc. 5th World Congr.
-
-
Lagasse, J.1
Mira, C.2
-
94
-
-
0020193225
-
Qualitative analysis of mathematical arc models using Lyapunov theory
-
R. Genesio, A. Vicino, and M. Tartaglia, “Qualitative analysis of mathematical arc models using Lyapunov theory,” Int. J. Elec. Power Energy Syst., vol. 4, pp. 245–252, 1982.
-
(1982)
Int. J. Elec. Power Energy Syst.
, vol.4
, pp. 245-252
-
-
Genesio, R.1
Vicino, A.2
Tartaglia, M.3
-
95
-
-
34250565733
-
Beitrag zur Theorie der Statistischen und der Dynamischen Lichtbogens
-
O. Mayr, “Beitrag zur Theorie der Statistischen und der Dynamischen Lichtbogens,” Archiv. F. Electr., vol. 37, pp. 588–608, 1943.
-
(1943)
Archiv. F. Electr.
, vol.37
, pp. 588-608
-
-
Mayr, O.1
|