-
2
-
-
0020722032
-
Uncertainty principle for partially coherent light
-
M. J. Bastiaans, "Uncertainty principle for partially coherent light," J. Opt. Soc. Am. 73, 251-255 (1983).
-
(1983)
J. Opt. Soc. Am
, vol.73
, pp. 251-255
-
-
Bastiaans, M.J.1
-
3
-
-
0037570465
-
A frequency-domain treatment of partial coherence
-
M. J. Bastiaans, "A frequency-domain treatment of partial coherence," Opt. Acta 24, 261-274 (1977).
-
(1977)
Opt. Acta
, vol.24
, pp. 261-274
-
-
Bastiaans, M.J.1
-
4
-
-
0016969750
-
Spectral coherence and the concept of cross-spectral purity
-
L. Mandel and E. Wolf, "Spectral coherence and the concept of cross-spectral purity," J. Opt. Soc. Am. 66, 529-535 (1976).
-
(1976)
J. Opt. Soc. Am
, vol.66
, pp. 529-535
-
-
Mandel, L.1
Wolf, E.2
-
5
-
-
84950652199
-
The Wigner distribution function of partially coherent light
-
M. J. Bastiaans, "The Wigner distribution function of partially coherent light," Opt. Acta 28, 1215-1224 (1981).
-
(1981)
Opt. Acta
, vol.28
, pp. 1215-1224
-
-
Bastiaans, M.J.1
-
6
-
-
0000794104
-
Coherence and radiometry with quasi-homogeneous planar sources
-
W. H. Carter and E. Wolf, "Coherence and radiometry with quasi-homogeneous planar sources," J. Opt. Soc. Am. 67, 785-796 (1977).
-
(1977)
J. Opt. Soc. Am
, vol.67
, pp. 785-796
-
-
Carter, W.H.1
Wolf, E.2
-
7
-
-
0017926394
-
Coherence and radiometry
-
E. Wolf, "Coherence and radiometry," J. Opt. Soc. Am. 68, 6-17 (1978).
-
(1978)
J. Opt. Soc. Am
, vol.68
, pp. 6-17
-
-
Wolf, E.1
-
8
-
-
0018036034
-
The radiant intensity from planar sources of any state of coherence
-
E. Wolf, "The radiant intensity from planar sources of any state of coherence," J. Opt. Soc. Am. 68, 1597-1605 (1978).
-
(1978)
J. Opt. Soc. Am
, vol.68
, pp. 1597-1605
-
-
Wolf, E.1
-
9
-
-
0017984569
-
Radiant intensity from inhomogeneous sources and the concept of averaged cross-spectral density
-
W. H. Carter, "Radiant intensity from inhomogeneous sources and the concept of averaged cross-spectral density," Opt. Commun. 26, 1-4 (1978).
-
(1978)
Opt. Commun
, vol.26
, pp. 1-4
-
-
Carter, W.H.1
-
10
-
-
0018493773
-
New equivalence theorems for planar sources that generate the same distributions of radiant intensity
-
E. Collett and E. Wolf, "New equivalence theorems for planar sources that generate the same distributions of radiant intensity," J. Opt. Soc. Am. 69, 942-950 (1979).
-
(1979)
J. Opt. Soc. Am
, vol.69
, pp. 942-950
-
-
Collett, E.1
Wolf, E.2
-
11
-
-
77952515914
-
Thermodynamic entropy of partially coherent light beams
-
H. Gamo, "Thermodynamic entropy of partially coherent light beams," J. Phys. Soc. Jpn. 19, 1955-1961 (1964).
-
(1964)
J. Phys. Soc. Jpn
, vol.19
, pp. 1955-1961
-
-
Gamo, H.1
-
14
-
-
0039764204
-
Positivity of weighted Wigner distributions
-
A. J. E. M. Janssen, "Positivity of weighted Wigner distributions," SIAM J. Math. Anal. 12, 752-758 (1981).
-
(1981)
SIAM J. Math. Anal
, vol.12
, pp. 752-758
-
-
Janssen, A.J.E.M.1
-
15
-
-
84975570835
-
-
The proof in Appendix A is due to Technische Hogeschool Eindhoven, Eindhoven, The Netherlands
-
The proof in Appendix A is due to M. L. J. Hautus, Technische Hogeschool Eindhoven, Eindhoven, The Netherlands (personal communication).
-
Personal communication
-
-
Hautus, M.L.J.1
-
16
-
-
0020202793
-
Effective number of degrees of freedom of partially coherent sources
-
A. Starikov, "Effective number of degrees of freedom of partially coherent sources," J. Opt. Soc. Am. 72, 1538-1544 (1982).
-
(1982)
J. Opt. Soc. Am
, vol.72
, pp. 1538-1544
-
-
Starikov, A.1
-
17
-
-
0020831770
-
Lower bound in the uncertainty principle for partially coherent light
-
M. J. Bastiaans, "Lower bound in the uncertainty principle for partially coherent light," J. Opt. Soc. Am. 73, 1320-1324 (1983).
-
(1983)
J. Opt. Soc. Am
, vol.73
, pp. 1320-1324
-
-
Bastiaans, M.J.1
-
18
-
-
84975570803
-
-
The nonincreasing behavior of jlq can be proved by showing that its derivative is nonpositive, indeed, with f (t) = t log t (t ≥ 0) a convex function, we have which is nonpositive by means of Ref. 20, Sec. 1.4.7, Eq. (1)
-
The nonincreasing behavior of jlq can be proved by showing that its derivative is nonpositive, indeed, with f (t) = t log t (t ≥ 0) a convex function, we have which is nonpositive by means of Ref. 20, Sec. 1.4.7, Eq. (1).
-
-
-
-
19
-
-
0012947513
-
-
(Macmillan, New York), Sec. 3.5, Theorem 5.9
-
M. Marcus and H. Minc, Introduction to Linear Algebra (Macmillan, New York, 1965), Sec. 3.5, Theorem 5.9.
-
(1965)
Introduction to Linear Algebra
-
-
Marcus, M.1
Minc, H.2
-
21
-
-
84975555286
-
-
The proof in Appendix C is partly due toTechnische Hogeschool Eindhoven, Eindhoven, The Netherlands
-
The proof in Appendix C is partly due to J. Boersma, Technische Hogeschool Eindhoven, Eindhoven, The Netherlands (personal communication).
-
Personal communication
-
-
Boersma, J.1
|